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Highlights  17 

1. Study oƯers quasi-experiment design isolating impact of a single GenAI upgrade 18 
2. AI-aƯordance alignment (A3) links task, pedagogy, learner needs to learning gains 19 
3. A3 improved GPT-4o cohort over GPT-3.5 on authentic tasks without exam impact 20 
4. A3 shifted student help-seeking to autonomous and improved sentiment toward AI 21 
5. AI upgrades will improve learning when paired with eƯective pedagogical design  22 
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Abstract  23 

Grounded in self-regulated learning, we present a quasi-experimental design to examine 24 
how a generative AI upgrade aƯects learning in an upper-level Environmental Data Science 25 
course. We isolated the educational eƯects of an AI upgrade (e.g., from ChatGPT-3.5 to 26 
ChatGPT-4o) by keeping the curriculum, pedagogy, and assessments constant across two 27 
cohorts (Spring 2024, n=12 and Spring 2025, n=13). The comparison shows a significant gain 28 
in authentic, ill-structured project performance, no loss in AI-free foundational-exam 29 
scores, a shift from peer-dependent to autonomous help seeking and increased positive 30 
sentiment toward AI support. Our central proposition is that AI upgrades improve learning 31 
when paired with eƯective pedagogical design. Specifically, we advance the AI-aƯordance 32 
alignment framework where learning gains occur when AI capabilities are deliberately 33 
matched to task authenticity, self-regulated learning phase, and pedagogical goals. The 34 
findings, while limited by small sample size, single-site design, and a focus on performance 35 
rather than direct measures of critical thinking, suggest that advances in AI can improve 36 
higher-order performance without eroding foundational knowledge, provided that eƯective 37 
pedagogical strategies for AI integration remain in place. These strategies include process 38 
transparency, scaƯolded AI use, hybrid AI-resistant assessment checkpoints, metacognitive 39 
reflections, and active instructor mentoring. The study provides guidance for integrating 40 
current and future advances in AI into higher education, especially in research-based 41 
contexts where there is a need to balance innovation with the preservation of learner agency 42 
and academic integrity. Future research should directly investigate the impact of AI upgrades 43 
on student critical thinking and cognitive development. 44 

Keywords: Generative AI; future of higher education; self-regulated learning; help seeking 45 
theory; cognitive oƯloading; authentic assessment; aƯordance; environmental data science46 
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Impact statement 47 

Advances in generative AI are constantly shifting the higher education landscape, requiring 48 
pedagogical research and practice to evolve with the AI growing capabilities. To move from 49 
reactive adaptation to a strategic design, we propose that pedagogical design is a key 50 
constant that transforms the “moving target” of AI advancements into a predictable 51 
opportunity for enhancing learning, especially authentic learning. This work presents a 52 
quasi-experimental study that oƯers a controlled test of how an upgrade in generative AI 53 
aƯordances reshapes learning in higher education since the AI boom in late 2022. For a 54 
research-based higher education course, by holding pedagogy constant while AI capabilities 55 
evolved for two cohorts in Spring 2024 and Spring 2025, the study uniquely isolates the 56 
impact of AI advancement on learner behaviors and outcomes. Our findings show positive 57 
convergence where students produce significantly better work on complex projects without 58 
eroding their foundational knowledge, accompanied by a positive shift in behavior toward 59 
autonomy and overall positive sentiment. We propose that the educational outcome of using 60 
AI is not determined by technology alone, but by embedded pedagogical design. 61 
Accordingly, we advance the AI-aƯordance alignment framework, oƯering practical design 62 
principles for scaƯolding AI use, promoting self-regulated learning, and redesigning 63 
assessments to support authentic learning. More generally, our findings contribute to an 64 
impending pedagogical pivot where AI as a co-teacher can absorb lower-level learning 65 
objectives, freeing instructors to mentor higher-order inquiry and creative synthesis. This 66 
work provides actionable guidance for educators to navigate the integration of current and 67 
future advances of AI into higher education. This is to preserve learner agencies, and 68 
empower learners with transferable competencies that will endure in an AI-driven future.69 
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1. Introduction  70 

The integration of generative artificial intelligence (AI) into higher education is rapid across 71 
science, technology, engineering and mathematics (STEM) and non-STEM disciplines in 72 
response to rising employer demand for AI skills and a broader workforce shift toward 73 
automation (Gilreath, 2025). However, this integration has multifaceted and often 74 
paradoxical impacts on education (Dergaa et al., 2024; Jose et al., 2025; Lim et al., 2023; 75 
Valcea et al., 2024) on hand, and is evolving on the other hand (S. Xu et al., 2024). On one 76 
hand, there is an ongoing debate about AI potential to support learning processes and 77 
scaƯold learner development, and the risks of foundational knowledge erosion, critical 78 
thinking diminishing, cognitive atrophy, and new ethical dilemmas(Fu & Weng, 2024; Han et 79 
al., 2025; Klimova & Pikhart, 2025; Kosmyna et al., 2025; D. Lee et al., 2024; H.-P. (Hank) Lee 80 
et al., 2025; Melisa et al., 2025).  This tension is evident, for example, in computation-81 
integrated education. For instance, Yilmaz & Karaoglan Yilmaz (2023) find that using AI tools 82 
improves student computational thinking skills, self-eƯicacy, and motivation, while 83 
Groothuijsen et al. (2024) report that AI use can lead to declining code quality and a negative 84 
impact on student collaboration. Another concern is that the proficiency of AI in lower-level 85 
tasks could deter early-stage learners from developing the foundational knowledge 86 
essential for higher-order thinking (Valcea et al., 2024). This can potentially cause cognitive 87 
decline (Kosmyna et al., 2025), if AI use is not carefully managed (Dergaa et al., 2024; 88 
Gerlich, 2025; Lijie et al., 2025). Additionally, this can potentially lead to superficial 89 
understanding if AI is used to replace rather than supplement genuine learning eƯorts (Fu & 90 
Weng, 2024; Tan & Maravilla, 2024). On the other hand, the educational impact of AI is not 91 
static as it is continuously shaped by the rapid evolution and upgrades of AI tools, oƯering 92 
increasingly mature capabilities (Lee et al., 2024; Lubbe et al., 2025). For example, between 93 
early 2024 to early 2025, generative AI tools advanced from mainly conversational 94 
assistance to a collaborator that is context-aware with native multimodality, larger context 95 
windows, and dynamic web search. This can alter student learning processes, help-seeking 96 
behaviors, and performance on diƯerent types of academic tasks (Jose et al., 2025; D. Lee 97 
et al., 2024; S. Xu et al., 2024). These advancements are creating a moving target for 98 
pedagogical research and practice, who are continuously adapting to AI growing capabilities 99 
(D. Lee et al., 2024).  100 

This dynamic and rapidly evolving context indicates a gap in literature that is the lack of 101 
experimental evidence on how generative AI aƯordances produce diƯerential gains in 102 
performance, especially in authentic versus foundational task performance. The adoption 103 
of AI in higher education is rapid (Nevárez Montes & Elizondo-Garcia, 2025). Recent meta-104 
analyses (Dong et al., 2025; Heung & Chiu, 2025; J. Wang & Fan, 2025; Youssef et al., 2024; 105 
Zhu et al., 2025) confirm a positive eƯect of AI on learning, yet these studies also report high 106 
heterogeneity, indicating that outcomes vary widely by context, domain, and the specific AI 107 
tool used. Accordingly, systematic reviews (Xia et al., 2024; W. Xu & Ouyang, 2022; Zhu et 108 
al., 2025) highlight the need for more empirical designs as the evidence on AI impact on 109 
learning outcomes remains limited particularly from controlled comparative studies in STEM 110 
disciplines. More critically, current research often treats generative AI as a uniform entity, 111 
failing to isolate the eƯects of specific, rapid upgrades in AI capability (Cai et al., 2024; N. 112 
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Wang et al., 2024). This is a critical gap given that the learner performance and behavior will 113 
evolve with AI technology, as this study shows.  114 

To address this gap, this study examines the eƯects of the advancement of AI capabilities on 115 
learning outcomes through self-regulated learning theory (Zimmerman, 2000). We propose 116 
that the learning outcomes depend on the AI aƯordance alignment that is the fit between AI 117 
capability, the task authenticity, and the self-regulated learning phase of the learner. 118 
Improved AI capabilities can reduce the procedural load during the performance phase of 119 
authentic projects, freeing cognitive resources for higher-order reasoning. However, if the 120 
same tools are introduced prematurely, this could short-circuit schema formation with 121 
respect to foundational knowledge (Khlaif et al., 2025; N. Wang et al., 2024). Reports of 122 
students bypassing conceptual struggle for ready-made answers reinforce this risk (Gerlich, 123 
2025; Kosmyna et al., 2025; Lijie et al., 2025). We therefore propose that pedagogical design 124 
and not the tool alone determines whether AI benefits outweigh risk. Specifically, while an 125 
advanced AI tool provides the capability to enhance student performance, it is the 126 
pedagogical design that directs that capability toward authentic learning gains while 127 
mitigating the risks of foundational erosion. 128 

To test this proposition, we implemented a two-cohort quasi-experiment design in an 129 
upper-level Environmental Data-Science course in Springௗ2024 (nௗ=ௗ12) and Springௗ2025 130 
cohort (nௗ=ௗ13) where instructor, syllabus and assessment were held constant and AI toolset 131 
varied. We compared cohorts on graded performance in authentic semester projects versus 132 
AI-free foundational exams, ranked help-seeking preferences, and aƯective responses 133 
captured through sentiment-coded reflections. By isolating the eƯects of a specific AI 134 
upgrade in a controlled setting, our study directly responds to calls for experimental designs 135 
that can establish clearer links between AI aƯordances and learner behavior (Belkina et al., 136 
2025; Zhao et al., 2025). Thus, this study provides one of the first controlled, theory-driven 137 
tests of AI-aƯordance alignment in higher education. By examining how the intentional 138 
alignment of AI and pedagogy can transform student learning, this study contributes to the 139 
literature on balancing the benefits and risks of AI for shaping the future of higher education 140 
(Al-Zahrani & Alasmari, 2024; Cai et al., 2024; Lim et al., 2023; O’Dea, 2024; Yusuf et al., 141 
2024). 142 

2. Theoretical framing  143 

This section establishes the conceptual basis for our central proposition of an AI-aƯordance 144 
alignment framework. We build this framework by integrating four key concepts, which are 145 
self-regulated learning (SRL), help-seeking theory, cognitive oƯloading, and authentic 146 
assessment. This aligns with an impending shift in higher education toward hybrid human-147 
AI co-regulation, where the AI acts as a partner to scaƯold learner SRL (Molenaar, 2022). 148 
While this study focuses on the performance phase of SRL, the role of AI in the full SRL cycle 149 
is discussed to provide context.   150 

2.1 Self-regulated learning in the AI era 151 

According to SRL, learning in not a passive process, but rather an active self-direct process 152 
(Panadero, 2017). The personalized learning environment provided by AI can enhance SRL 153 
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(Lin & Chang, 2023) including providing real-time scaƯolding for SRL strategies than can lead 154 
to improved learning (Li et al., 2025). SRL involves learners actively managing their learning 155 
through a cycle of forethought, performance, and self-reflection (Zimmerman, 2000).  SRL 156 
can be used to understand how learners engage with external tools like generative AI (Wang 157 
et al., 2025).  In each phase, learners have distinct regulatory needs, which are cognitive, 158 
metacognitive, and motivational support (Panadero, 2017). To actively engage with learning, 159 
learners need cognitive support to process information, apply strategies, and critically 160 
analyze content (Alam & and Mohanty, 2024). To regulate cognitive processes eƯectively and 161 
develop adaptive learning behaviors, learners need metacognitive support to plan, monitor, 162 
and adjust their learning strategies (K. Wang et al., 2025). To promote long-term engagement 163 
in learning, learners need motivational support that improve their self-eƯicacy and positive 164 
self-talk, and sustain their eƯort even when the task is hard (Panadero, 2017). 165 

How SRL needs are met in each SRL phase, determines whether AI will serve as cognitive 166 
support or a cognitive shortcut that undermines learning (Alam & and Mohanty, 2024; 167 
Gerlich, 2025). In the forethought phase, AI can assist learners with brainstorming, goal 168 
setting and planning, yet with risks such as relying on biased outputs, compromising 169 
originality, or lack of rigor (Chang et al., 2023). During the performance phase, learners 170 
execute their plans and monitor their progress. When AI capabilities are aligned with learner 171 
needs, it can support deeper engagement and cognitive agency (Wang et al., 2025). For 172 
example, AI can help a hydrology learner with code generation, data curation for a specific 173 
watershed, contextual geospatial technical details, and hydrologic meta-data of a stream in 174 
the study area. However, misalignment can promote passive consumption of surface-level 175 
solutions, displacing essential self-regulatory processes (Alam &  Mohanty, 2024; Gerlich, 176 
2025). For the self-reflection phase, learners evaluate their performance to adjust to future 177 
strategies. AI can support this phase through structured feedback, but only if critical review 178 
is encouraged rather than uncritical acceptance of AI outputs. However, if AI feedback lacks 179 
transparency or promotes over-trust, learners may bypass reflective judgment and default 180 
to superficial verification, which can limit the development of metacognitive insight (Zalazar-181 
Jaime & Medrano, 2021).  However, the learners’ navigation of this cycle is not uniform. Some 182 
may resist using AI when it is misaligned with task goals (Khlaif et al., 2025), while others may 183 
actively regulate AI outputs to maintain their own cognitive agency. Similarly, engaging in 184 
critical review can be subject to individual learner personality traits (Weng et al., 2024). In 185 
any case, the goal of curriculum design in the AI era is to guard against executive 186 
outsourcing, where the illusion of regulation displaces genuine learning, as explained below.  187 

2.2 Help-Seeking theory: From executive to adaptive AI help 188 

Help-seeking is a key component of SRL. A key distinction exists between (i) adaptive help-189 
seeking that is strategically seeking hints or guidance to overcome an obstacle while 190 
preserving autonomy and promoting mastery; and (ii) executive help-seeking that is seeking 191 
quick and direct answers undermining deep learning (Huet et al., 2016; Şahin et al., 2025). 192 
The instant, on demand, and judgment-free nature of AI responses can unintentionally blur 193 
the line between adaptive and executive help-seeking, potentially normalizing an answer-194 
seeking behavior that bypasses metacognitive eƯort. However, the risk of executive help 195 
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seeking behavior or executive outsourcing can be mitigated. We propose that authentic, 196 
complex tasks can redirect learners toward more adaptive help-seeking by shifting the focus 197 
from "correct answers" to a meaningful process. In this context, learners are prompted to 198 
use AI as a scaƯold rather than a shortcut. Additionally, AI can lower social barriers to help-199 
seeking, such as fear of embarrassment (Newman, 2002), encouraging learners who might 200 
otherwise hesitate (e.g., due to low confidence or high-performance anxiety) to seek 201 
assistance. As Msambwa et al. (2025) note, AI opens pathways for new, adaptive forms of 202 
help-seeking with non-judgmental guidance that aligns with learning goals. In the AI era, 203 
help-seeking needs to be reconceptualized to include not only interpersonal help (e.g., 204 
peers and instructors), but also strategic human-AI collaboration that can co-regulate 205 
learning and facilitate strategic cognitive oƯ-loading. 206 

2.3 Cognitive oƯ-loading and scaƯolding AI use 207 

Cognitive oƯloading, which is the delegation of mental tasks to external tools (Risko & 208 
Gilbert, 2016), is central to how learners use AI (Gerlich, 2025; Iqbal et al., 2025). While 209 
beneficial for freeing up working memory for complex reasoning (Sweller et al., 2019), 210 
overuse risks dependency.  On one hand, oƯloading can be highly productive. For example, 211 
by automating routine or extraneous tasks (e.g., code generation and debugging, or finding a 212 
specific dataset and metadata), AI frees up the learner working memory to focus on higher-213 
order reasoning and germane cognitive load (e.g., learning a new technique or interpreting 214 
results) as suggested by Gerlich (2025). This study suggests that with improved AI 215 
aƯordances, this type of productive oƯloading can be enhanced during the performance 216 
phase of SRL. As such, cognitive oƯloading will reduce unproductive eƯort (extraneous 217 
load), while preserving learner agency in schema construction (germane load) according to 218 
cognitive load theory (Sweller et al., 2019). On the other hand, oƯloading can be risky. 219 
Uncritical reliance on AI for core learning process (e.g., idea generation, evaluation, or 220 
inference) risks creating epistemic dependency and accordingly undermining the 221 
development of metacognitive skills (Gerlich, 2025; Gonsalves, 2024) that are central to 222 
deep learning (Sparrow et al., 2011). 223 

The pedagogical objective is thus not to prevent oƯloading, but to regulate what is oƯloaded 224 
and why. This is to ensure that AI remains a support rather than a substitute of core cognitive 225 
processes (Gerlich, 2025; Lee et al., 2025). A structured scaƯolding approach for AI use is 226 
one way to manage this balance eƯectively. For example, Elshall & Badir (2025) and present 227 
study show progression from no-AI tasks to build foundational knowledge, to AI resistant 228 
assignments to introduce AI use, to structured AI use on complex problems, and finally to 229 
open AI use on authentic, ill-structured projects. This sequence is a mean to promote 230 
meaningful oƯloading and maintaining learner agency. Without scaƯolded AI use, cognitive 231 
oƯ-loading can be a low-eƯort cognitive strategy, particularly in open and high use of AI, 232 
where immediate and seemingly authoritative outputs can discourage deeper learning (Kim 233 
et al., 2025). 234 
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2.4 Authentic assessment: Aligning tasks with AI capabilities 235 

The nature of the assessment is critical in the age of AI. The future of assessment lies not in 236 
banning AI, but in redesigning tasks to make meaningful learning the object of evaluation 237 
(Swiecki et al., 2022). For example, S. Xu et al. (2024) emphasize that using advanced AI such 238 
GPT-4o requires the design of suƯiciently challenging tasks to support rather than replace 239 
human judgment and preserve academic rigor. We propose that the value of AI as a learning 240 
tool is most realized when applied to tasks that mirror real-world complexity. This is the 241 
domain of authentic assessment, which emphasizes complex, process-oriented tasks that 242 
require higher-order thinking and increasingly human-AI collaboration (Khlaif et al., 2025; 243 
Swiecki et al., 2022). Unlike well-structured problems with single correct answers, authentic 244 
tasks are often ill-structured and open-ended, and often compelling learners to define the 245 
problem itself before solving such as the term project (Elshall, 2025) of our quasi-246 
experiment. Authentic tasks are essential in the AI era because they are resistant to 247 
complete automation. Instead, learners apply disciplinary knowledge in ambiguous and 248 
dynamic contexts that are not subject to complete automation (Perkins et al., 2024; Swiecki 249 
et al., 2022).  This demands that learners learn to identify and critique, using AI not to replace 250 
their thinking but to augment their own intelligence and capabilities, thereby maintaining 251 
agency over their personalized learning (Ouyang & Jiao, 2021). Approaches like the AI 252 
Assessment Scale (Perkins et al., 2024), HEAT-AI (Temper et al., 2025) and FACT assessment 253 
(Elshall & Badir, 2025) provide frameworks for tuning the permissible level of AI engagement 254 
based on the learning goals, ensuring that AI is used to deepen rather than circumvent 255 
genuine learning. At the intersection of pedagogy and policy, these frameworks highlight the 256 
necessity of articulating AI aƯordances and constraints within assessment design (Khlaif et 257 
al., 2025). 258 

2.5 Synthesis: The AI-aƯordance alignment proposition 259 

Integrating the concepts of SRL, help-seeking, cognitive oƯloading, and authentic 260 
assessment, we advance the AI-aƯordance alignment framework in higher education. As 261 
shown in Figure 1, this framework posits that the educational value of generative AI is 262 
maximized when AI specific technological capabilities or aƯordances are dynamically 263 
aligned with pedagogical goals, task complexity, and learner regulatory needs. Such 264 
alignment ensures that AI aƯordances that serve as primary mechanisms for supporting skill 265 
development (Celik et al., 2024) are used to preserve learner agency and improve learner 266 
motivation. The key is to ensure that AI aƯordances serve as extensions of a learner cognitive 267 
strategies, not as substitutes that impair critical thinking and deep learning (Gerlich, 2025; 268 
Gonsalves, 2024; Jose et al., 2025; Lee et al., 2025). In complex, authentic tasks, this 269 
alignment is especially critical during the performance phase of SRL (Celik et al., 2024; Iqbal 270 
et al., 2025). When alignment is high, learners can productively oƯload procedural burdens 271 
to focus on higher-order reasoning, facilitating adaptive help-seeking. This turns AI into an 272 
epistemic partner or co-regulator (Gonsalves, 2024; Molenaar, 2022; Philbin, 2023) that 273 
augment learning rather than a tool for executive help seeking (Msambwa et al., 2025). This 274 
study provides an empirical test of this proposition, examining how a specific AI aƯordance, 275 
when aligned with an authentic project, improves performance without eroding the 276 
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foundational knowledge as assessed through traditional means. Moreover, as shown in 277 
Figure 1, SRL is a cyclic process as the learning outcomes from one task do not represent an 278 
endpoint but feedback into the learner self-reflection and subsequent forethought. We 279 
further propose that AI-aƯordance alignment can additionally influence goalsetting for 280 
future tasks and sustained engagement (as observed in this study), creating a dynamic and 281 
evolving learning process (Figure 1). 282 

 283 

Figure 1. The AI-aƯordance alignment framework where matching AI aƯordances with task 284 
authenticity, pedagogical goals, and learner regulatory needs influences help-seeking 285 
behaviors and improves learning outcomes. 286 

3 Methods 287 

3.1 Study design 288 

We employed a two-group, quasi-experimental design that compared consecutive oƯerings 289 
of the same upper-division Environmental Data Science course in Spring 2024 (n = 12) and 290 
Spring 2025 (n = 13). Both oƯerings used an identical syllabus, assessments, instructor, 291 
teaching assistant, contact time, and learning management system site. All instructional 292 
elements, including lessons, assignments, weekly milestones, and rubrics, were held 293 
constant. The key planned contrast was the generative-AI toolset available to students, 294 
which serves as the "AI upgrade" or treatment condition. The Spring 2024 cohort functions 295 
as the comparison group, allowing for inference on tool-related learning eƯects under 296 
otherwise stable pedagogical conditions. 297 
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3.2ௗCourse context 298 

The study was conducted in a course oƯered in a face-to-face format to a small cohort of 299 
undergraduate and graduate students from civil and environmental engineering and 300 
geoscience programs. With no prior programming prerequisites, the course introduces 301 
students to water, environment, and climate data analysis in Python. It is structured around 302 
project-based learning where students acquire datasets from sources like Copernicus, EPA, 303 
NASA, NOAA, USGS, and Water Atlas (of Florda). The small class size of 12–13 students per 304 
cohort is an integral component of our design to enable individualized support and close 305 
collaboration with instructor and teaching assistant. 306 

Over 15 weeks, the curriculum progressed through 10 themed modules, emphasizing 307 
hands-on practice. Foundational skills included Python basics, programming, and working 308 
with libraries such as Pandas for spreadsheet data, NumPy for scientific computing, and 309 
Matplotlib for visualization. Advanced skills involved workflows for multi-dimensional 310 
geospatial data using Xarray and CartoPy, machine learning for predictive modeling, and 311 
remote sensing with Google Earth Engine. The course is centered on a term project requiring 312 
students to identify and solve an environmental data science problem through data curation, 313 
visualization, and analysis. The course culminates in a comprehensive paper-based final 314 
exam. For more details, the course open-access textbook (Elshall, 2025) includes lessons, 315 
homework assignments, a semester-long project assignment, and final exam study guide. 316 
These core features were consistent across both the Spring 2024 and Spring 2025 cohorts, 317 
providing a stable instructional environment for comparison. 318 

3.3 Course participants and baseline equivalence 319 

To validate the quasi-experimental design, the baseline equivalence of the two cohorts was 320 
established at the start of the course. The instructor, with a background in groundwater 321 
hydrology, and the teaching assistant, with a background in software engineering, were the 322 
same for both cohorts. Prior programming experience, assessed via a first-day survey 323 
(detailed in Section 3.5), showed that both cohorts were dominated by novices (“none” or “a 324 
little” programming experience), and did not diƯer significantly (Figure 2a). Furthermore, 325 
Figure 2b shows a box-and-whisker comparison of homework scores completed without 326 
generative-AI assistance (Homework 1: Python basics; Homework 2: Python programming) 327 
pooled within each year (2024, n = 24; 2025, n = 26). Each box shows the middle 50% of the 328 
data with the inside line marking the median, the whiskers extending to the furthest values 329 
that are within 1.5 times the box height, and circles denoting outliers. The two groups 330 
achieved statistically indistinguishable scores on early homework assignments completed 331 
without AI (Figure 2b) as detailed in Section 3.5. A two-sample Welch test confirmed no 332 
significant diƯerence in means (p = 0.88) or variances (p = 0.78) for these foundational 333 
scores. This comparability indicates that subsequent performance and attitude shifts can 334 
be attributed to the generative AI learning environment rather than baseline diƯerences 335 
between the cohorts. 336 
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 337 
Figure 2. Baseline equivalence of the 2024 and 2025 cohorts. (a) Self-reported prior 338 
programming experience for each cohort (Spring 2024, n=12; Spring 2025, n=13). (b) Scores 339 
on initial homework assignments completed without AI assistance. The inset p-values from 340 
Welch t-test (t-p) and F-test (var-p) show no statistically significant diƯerence in cohort 341 
means or variances, respectively.  342 

3.4 AI tool upgrade from Spring 2024 to Spring 2025 343 

To isolate the impact of rapidly evolving generative AI, the foundational toolset and core AI 344 
pedagogical policies were held constant for both cohorts. In both years, the integrated 345 
development environment (IDE) was Jupyter Lab with integrated Jupyter AI coding assistant. 346 
In-class demonstrations centered on ChatGPT as a primary example of a generative AI tool. 347 
Students were also introduced to other large language models via Chatbot Arena (2025) for 348 
comparing generative AI models. The course policy on AI usage was identical for both 349 
groups, providing a controlled baseline. The upgrade of generative-AI capabilities from 350 
January 2024 to January 2025 is marks a shift from conversational assistance to context-351 
aware collaborator in environmental data science workflows detailed in Table 1. This 352 
upgrade involves key advancements such as native multimodality (e.g., text and image 353 
processing), larger context windows, and dynamic web search as well as progressive 354 
improvements in the core large language models. 355 

A representative task from a student project analyzing the Caloosahatchee River watershed 356 
illustrates this transition (Duus, 2025). In early 2024, a student using ChatGPT 3.5 would be 357 
constrained by a static knowledge cutoƯ. The retrieval of a specific USGS Hydrologic Unit 358 



  

12 
 

Code (HUC) of the watershed or active monitoring station IDs near the Gulf of Mexico would 359 
be a manual process requiring external searching and experience. The 2025 toolset, 360 
featuring ChatGPT-4o with dynamic web-search, enables direct and accurate retrieval of this 361 
geospatial information. Subsequently, while the 2024 workflow required writing boilerplate 362 
Python code for data acquisition and processing with limited assistance, the 2025 toolset 363 
streamlines this by allowing file uploads and generating context-aware pipelines to 364 
download and format the discharge data. Furthermore, analysis and visualization, such as 365 
plotting watershed and station locations with GeoPandas and plotting discharge data, is 366 
transformed from a task requiring significant manual code adaptation in 2024 to an 367 
integrated process in 2025. In addition, the introduction of Jupyter AI v2.29 with contextual 368 
menus further enhances this workflow by providing cell-level code explanation and error 369 
fixing, a feature that was absent in the prior version (Jupyter AI v2.9). This progression allows 370 
students to focus more on higher-level analysis and interpretation rather than on the process 371 
of data retrieval and code implementation. 372 
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Table 1. Generative-AI tool capabilities in Spring 2024 vs Spring 2025 using ChatGPT as an 373 
example for generative-AI models and Jupyter AI as an example for AI coding assistants 374 

Category January 2024 January 2025 
Core large 
language model   

GPT 3.5 – Knowledge base: Static 
corpus (e.g., cutoƯ Sep 2021); 
Modality: text-only input/output; 
Features: No file upload; more 
prone to reasoning and code 
errors 

GPT 4o – Knowledge base: 
Dynamic retrieval via integrated 
web-search including “deep 
search”; Modality: Natively 
multimodal (text, image); 
Features: direct file upload; 
markedly improved accuracy 

Intra-session 
context window 
(memory)  

A small (~4,000 token) context 
window resulted in contextual 
decay, necessitating frequent re-
prompting to avoid errors in 
extended analyses 

A large (~128,000 token) context 
window maintained high-fidelity 
context, facilitating 
sophisticated, multi-step 
analysis within a single session 

Domain specific 
programming 
tasks 

Required manual coding of 
boilerplate code for specialized 
tasks, such as NetCDF 
preprocessing (Xarray) or 
shapefile reprojection 
(GeoPandas) 

Enabled context-aware pipelines 
for NetCDF workflows, 
geospatial reprojection and 
mapping based on direct file 
upload and live web data 

Integrated data 
analysis 
environment 

Python-based analysis tools 
were a premium feature (GPT-4) 
with limited support for basic file 
types such as CSV 

GPT-4o enabled integrated 
Python execution with support 
for CSV, NetCDF, and shapefiles 
for in-chat processing, statistical 
analysis, visualization, and 
geospatial analysis  

Accessibility The free tier was limited to the 
base model (GPT 3.5). Access to 
advanced features like GPT-4 
and web Browse required a paid 
subscription 

Broader free-tier access to the 
advanced model (GPT-4o). 
Educational programs provided 
two-month extended access to 
premium features such as 
priority access during traƯic and 
faster responses 

 

IDE Integration 
(Jupyter AI) 

Conversational assistance via a 
native chat user-interface in 
Jupyter Lab (v2.9 on Python 3.11) 
with limited direct code 
interaction 

Cell-level assistance via 
contextual menus (v2.29 on 
Python 3.12) for debugging and 
refactoring, with enhanced code 
dependency awareness 

3.5 Assessment and data sources 375 
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3.5.1 Assessment framework with scaƯolded AI use  376 

To evaluate student learning, we employed the FACT (Fundamental, Applied, Conceptual, 377 
critical Thinking) assessment framework, which diƯerentiates between foundational 378 
knowledge without AI assistance, and performance on authentic tasks with AI assistance 379 
(Elshall & Badir, 2025) to balance AI-assisted and AI-resistant assessments. FACT 380 
assessment specific application to the course tasks is detailed in Table 2. This specific 381 
application is configured to attribute any gains to the ill-structured, authentic project (A), 382 
while establishing a stable, AI-resistant baseline for foundational knowledge (F and C). The 383 
project is considered "ill-structured" as it requires students to identify a research problem 384 
and execute a quantitative workflow that addresses a real-world challenge that lacks a single 385 
correct answer. In contrast, homework assignments are "well-structured," consisting of 386 
tasks with deterministic solutions where performance could be objectively measured.  387 

Table 2. Application of the FACT assessment framework. 388 
FACT components AI permitted Main task in this study 

F – Fundamental skills No Homework 1-2 (coding without AI) 
A – Applied, authentic work Yes Semester-long real-world project 
C – Conceptual understanding No 75-min closed-book written exam 
T – critical Thinking Yes Multi-step case study (not analyzed here) 

3.5.2 Performance metrics 389 

Student performance was assessed across three categories: fundamental skill homework, 390 
an authentic project, and a final exam. All grade data were anonymized and coded with 391 
unique student identifiers. Fundamental skills (Homework) were evaluated using two 392 
assignments (Homework 1: Python Basics; Homework 2: Python Programming) for which AI 393 
use was not permitted. The assignments involved tasks with deterministic solutions, 394 
allowing for objective grading against a predefined answer key. To ensure grading 395 
consistency and inter-cohort reliability, both sets of homework were graded by the same 396 
teaching assistant for both cohorts. Grades were normalized to a 100-point scale and 397 
combined for comparison. With respect to authentic performance (Project), the capstone 398 
project requires students to complete open-ended, authentic tasks with open AI use. 399 
Undergraduate students need to work in a group of up to five students, and graduate 400 
students can work individually or in a group of up to four students. In 2024, out of the three 401 
graduate students, two worked independently. In 2025, out of the two graduate students, 402 
one worked independently. To mitigate the risk of "grader drift" between years and establish 403 
a reproducible grading standard, all projects from both cohorts were graded 404 
programmatically using GPT-o3 model. This advanced model is distinguished by advanced 405 
reasoning mechanism with self-critique that enhances consistency and accuracy (Guan et 406 
al., 2025). The model was provided with a detailed project rubric and evaluated each 407 
submission against the rubric. To validate this approach, the AI-generated rankings for 408 
projects were compared against the instructor's grades and found to be highly consistent. 409 
With respect to conceptual understanding (Final Exam), it was assessed via a 60-minute, 410 
paper-based final exam consisting of 60 multiple-choice questions. AI use was not 411 



  

15 
 

permitted, and the same exam was administered to both cohorts to ensure a consistent 412 
measure of conceptual knowledge independent of AI assistance. The detailed instructions 413 
and rubrics for these homework assignments and project, and the final exam study guide are 414 
available in the course textbook (Elshall, 2025). 415 

3.5.3 Survey instruments  416 

Data was collected from two student cohorts: Spring 2024 (final n=12) and Spring 2025 (final 417 
n=13). Attrition was minimal, and the final survey response rate among enrolled students 418 
was 100% for both cohorts. Data was collected using an initial survey on the first day of class 419 
and a final survey at the conclusion of the semester. With respect to the initial survey, this 420 
"Get to know each other" survey was used to establish a baseline of the students' prior 421 
experience and included the question: "What is your programming experience?" (Figure 1). 422 
The end-of-course survey was the primary instrument for assessing student perceptions and 423 
learning behaviors related to AI. To maintain the integrity of the quasi-experimental design, 424 
only questions common to both cohorts were used for direct comparison. These included: 425 
i. A five-point Likert-scale item on AI reliance: "When I solve an environmental data science 426 

problem, I heavily rely on AI?" 427 
ii. A five-point Likert-scale item on learning diƯiculty: "After I study a topic in this course and 428 

feel that I understand it, I have diƯiculty solving problems on the same topic. 429 
iii. A ranked-choice question on help-seeking behaviors: "When I get stuck on an 430 

environmental data science problem, rank how you seek help in order:" 431 
iv. An open-ended prompt to capture qualitative data on student sentiment: "How has the 432 

integration of AI coding assistance, such as Jupyter AI or ChatGPT, impacted your 433 
learning experience in the course, both positively and negatively?" 434 

The 2025 survey included several additional questions that are not used in this study but are 435 
available in the supporting materials (Elshall, 2025). 436 

3.6 Data analysis 437 

3.6.1 Sentiment analysis 438 

The qualitative dataset comprised complete, open-ended responses from all enrolled 439 
students. For analysis, all responses were first anonymized, converted to lowercase, and 440 
stripped of punctuation. We then applied TextBlob v0.17.1, using its default Pattern Analyzer, 441 
to compute continuous scores for polarity ranging from -1 for negative to 1 for positive, and 442 
subjectivity ranging from 0 for objective to 1 for subjective. Following established practice, 443 
we classified polarity scores larger than 0.05 as Positive, less than -0.05 as Negative, and 444 
values in between classified as Neutral. For subjectivity, scores larger than or equal to 0.5 445 
were labeled 'Subjective' and scores less than or equal to 0.5 were labeled 'Objective'. To 446 
verify the method reliability, a qualitative author review of the assigned labels was 447 
performed, confirming that this lexicon-based approach yielded a robust measure of 448 
student aƯective responses.  449 

3.6.2 Thematic coding 450 

To identify and quantify recurring themes within student reflections, we employed a hybrid 451 
thematic coding approach guided by Braun and Clarke (2006) reflexive thematic-analysis 452 
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procedure. The initial codebook was deductively derived from themes in prior research on 453 
student-AI interaction in Spring 2024 (Elshall & Badir, 2025) and was then inductively 454 
expanded to capture emergent themes in Spring 2025. The source of this data was the 455 
complete set of student responses to the open-ended question on the final course survey. 456 
The unit of analysis was the individual phrase or sentence expressing a complete thought. 457 
Coding was conducted by authors who independently analyzed the entire corpus. Any 458 
discrepancies were resolved through discussion to achieve consensus. To quantify the 459 
evolution of themes, we calculated the percentage of student reflections in each year that 460 
contained at least one coded reference to each specific theme. 461 

3.6.3 Help-seeking ranks 462 

Data on help-seeking preferences were obtained from a question required on the final 463 
course survey where students were asked to rank six strategies from 1 (most preferred) to 6 464 
(least preferred). For each of the six strategies, the mean of the ranks assigned by all students 465 
within a cohort was calculated. This procedure produces a single mean rank value for each 466 
strategy for each year. 467 

4. Results and discussion 468 

The presentation of the results follows the causal chain implied by the AI-aƯordance-469 
alignment framework, moving from the technology upgrade (Section 3.4) to subsequent 470 
shifts in student behaviors (Section 4.1), their feelings and interpretations (Sections 4.2 to 471 
4.4), their measurable authentic gains (Section 4.5), and finally, their sustained engagement 472 
(Section 4.6). 473 

4.1 Behavioral shift from peer-reliance to self-reliance 474 

The introduction of more capable generative AI tools in 2025 prompted a shift in student 475 
problem-solving behaviors from a reliance on peers toward greater self-suƯiciency (Figure 476 
3). In 2024, the top-ranked help-seeking strategy was "Seek help from classmates" (mean 477 
rank = 3.42), but by 2025 this inverted, with "Experiment on my own" rising to the first position 478 
(mean rank = 3.23) (Figure 3a). The preference for seeking help from classmates did not drop 479 
considerably, likely because students are encouraged to assist one another in homework 480 
and group projects. The most significant rank change was for "Consult online resources," 481 
which rose from the least-preferred strategy in 2024 to the third most-preferred in 2025. This 482 
suggests the AI enhanced web-search capabilities eƯectively directed students to useful, 483 
domain-specific online resources such as the Water Atlas of Florida, Capricious Climate 484 
Data Store, or the North American CORDEX data archive. The magnitude of these changes, 485 
quantified in Figure 3b, confirms the trend: “Consult online resources” and “Reach out AI” 486 
show the largest increases in preference (+1.21 and +0.65, respectively), while “Reach out 487 
instructor” saw the largest decrease (-0.41). 488 

Figure 3c provides a visualization of this re-order between 2024 and 2025. The shifts signal 489 
students' increased trust in AI and digital information sources. The corresponding fall of 490 



  

17 
 

"Reach out instructor" to last place indicates a reduced inclination to interrupt the instructor 491 
as AI tools reduced technical barriers and became more capable and accessible. 492 
"Experiment on my own" rose to the top-ranked strategy suggesting increased autonomy. 493 
These changes suggest that students shifted from instructor-centered or peer-centered 494 
assistance toward more autonomous and AI-assisted strategies. These findings align 495 
strongly with the self-determination theory model validated by (Annamalai et al., 2025) such 496 
that our results provide behavioral evidence of this principle in action. Taken together, these 497 
results indicate a clear behavioral shift. With more powerful and reliable AI tools, students 498 
became more inclined to experiment independently and use online resources before turning 499 
to interpersonal help, demonstrating a greater sense of resourcefulness and self-eƯicacy. 500 
Annamalai et al. (2025) confirms that this autonomous behavior reflects increased 501 
competence.502 

 503 
Figure 3. Evolution of student help-seeking strategies. (a) Mean rank for six strategies in 504 
Spring 2024 (n=12) and Spring 2025 (n=13), where a lower rank indicates higher preference. 505 
Numbers above the bars show the mean rank and the ordinal position for that year. (b) Year-506 
over-year change in mean rank (2025 – 2024), where positive values signify a rise in 507 
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preference. (c) A visual re-ordering of the preference lists, highlighting the shift from peer-508 
help toward independent learning and online resources, indicating greater self-eƯicacy and 509 
resourcefulness. 510 

4.2 Increased reliance with reduced application diƯiculty  511 

Following the shift in student help-seeking behavior, student perceptions of their 512 
relationship with AI also evolved, specifically concerning their reliance on the tools and the 513 
diƯiculty of applying their knowledge (Figure 4). The data shows that student reliance on AI 514 
increased with the upgraded tools (Figure 4a). In 2024, a combined 50.0% of students 515 
"Agreed" or "Strongly Agreed" that they heavily relied on AI. By 2025, this sentiment rose to a 516 
combined 69.3% (30.8% "Strongly Agree" and 38.5% "Agree"). This increase is an expected 517 
outcome, suggesting that as the tools became more capable and useful, students naturally 518 
integrated them more deeply into their standard workflow. This finding is strengthened by a 519 
simultaneous and significant reduction in students' perceived diƯiculty in applying 520 
knowledge (Figure 4b). When asked if they had diƯiculty solving problems on a topic even 521 
after feeling they understood it, the proportion of students agreed dropped from 41.6% in 522 
2024 to just 23.1% in 2025. The plurality of 2025 cohort (46.2%) selected "Neutral" on this 523 
question, indicating a marked decrease in learning friction. Taken together, these two trends 524 
are revealing. More powerful AI tools led to greater reliance, but this increased reliance was 525 
correlated with students feeling more capable and finding it easier to translate conceptual 526 
understanding into practice. This suggests that upgraded AI provided productive support 527 
that improved, rather than hindered, student self-eƯicacy. 528 

 529 
Figure 4. Student perceptions of AI reliance and application diƯiculty. Stacked Likert 530 
distributions for student responses from Spring 2024 (n=12) and Spring 2025 (n=13). (a) 531 
Responses to the statement: “I heavily rely on AI to solve environmental data-science 532 
problems.” (b) Responses to the statement: “After I understand a topic, I still have diƯiculty 533 
solving problems on that topic.” Percentages and absolute respondent counts are labeled 534 
within each segment. The increase in agreement on reliance paired with the drop in 535 
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application diƯiculty suggests that the upgraded tools promoted productive reliance that 536 
supported rather than hindered student understanding. 537 

4.3 AƯective climate from critique to endorsement  538 

Beyond behavioral changes, the AI upgrade transformed the overall aƯective climate of the 539 
course. AƯective climate, which refers to the collective emotional tone reflecting the group-540 
shared feelings about their learning experience, shifted from cautious and objective to 541 
positive and introspective. An analysis of open-ended survey comments shows that in 2024, 542 
sentiment was mixed: 42% of comments were positive, while 25% were negative. By 2025, 543 
positive comments surged to 77%, while negative comments fell to just 8% (Figure 5a). A 544 
similar shift occurred in subjectivity. In 2024, comments were predominantly objective 545 
(83%), often consisting of technical critiques like "Jupyter AI was unhelpful because it did 546 
not work". In 2025, subjective or personal reflections became the largest category (46%), 547 
indicating students were oƯering more subtle evaluations of their personal learning process 548 
(Figure 5b). 549 

 550 
Figure 5. Sentiment shifts in student narrative feedback. (a) Proportion of coded student 551 
comments by polarity with example quotations for each category. (b) Proportion of coded 552 
student comments by subjectivity with example quotations for each category. Positive 553 
polarity increased, while subjective statements more than doubled, indicating richer 554 
personal reflections. The 2025 cohort talked about AI in markedly more positive and 555 
introspective terms, pointing to stronger engagement and ownership of learning. 556 
 557 
A scatter plot of individual comments further visualizes this migration of sentiment (Figure 558 
6). In 2024, most comments clustered in the objective quadrants reflecting reserved praise 559 
or technical critiques. In 2025, the comments shifted decisively into the "positive and 560 
subjective" quadrant, indicating strong personal endorsement. This combined evidence 561 
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demonstrates that as the AI tools improved, students not only expressed more favorable 562 
opinions but also engaged in deeper and more personalized reflection about their learning. 563 
Students moved from simply stating whether the tool worked to describing how it shaped 564 
their understanding, a sign of greater ownership and engagement with the AI-assisted 565 
workflow. 566 
 567 

 568 
Figure 6. Polarity–subjectivity landscape of individual quotations. Each point represents a 569 
single student's comment, colored by year. The axes plot the comment polarity (negative to 570 
positive) and subjectivity (objective to subjective). The dashed lines partition the space into 571 
four interpretive quadrants, showing a clear migration of 2025 comments toward the 572 
"Positive + Subjective" quadrant. This migration indicates growing enthusiasm and 573 
ownership of AI tools. 574 

4.4 Evolving themes: Independence versus overreliance 575 

To understand the quantitative shifts in sentiment, a thematic analysis of student open-576 
ended comments was performed. This analysis identified ten key positive and negative 577 
themes and tracked how theme prevalence changed from 2024 to 2025, as shown in the 578 
heatmap in Figure 7. The AI upgrade resulted in a clear evolution of student perceptions, with 579 
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some benefits becoming more pronounced, some older frustrations disappearing, and new 580 
concerns emerging. The most significant positive shifts were in student perception of the AI 581 
role in enhancing autonomy and solving problems. The theme of “(+) Independence in 582 
Learning” saw the most increase, evolving from a minor theme mentioned by 16.7% of 583 
students in 2024 to a major one cited by 61.5% in 2025. This aligns perfectly with the 584 
behavioral shift toward self-reliance seen in Section 4.1. Furthermore, “(+) Support in 585 
Problem Solving” already the most common positive theme in 2024 (66.7%) became even 586 
more prevalent in 2025 (84.6%). This indicates that students found the upgraded AI to be an 587 
even more powerful and reliable partner for tackling complex coding challenges. 588 

However, this increased capability was accompanied by a new set of concerns. The theme 589 
of “(-) Overreliance and Foundational Erosion” became more common, increasing from 590 
16.7% in 2024 to 30.8% in 2025. A related, new concern also negative emerged regarding “(-591 
) Superficial Understanding” (from 0% to 15.4%), with students worrying that the AI made it 592 
possible to get correct answers without deep understanding. At the same time, the AI 593 
upgrade appeared to solve previous frustrations. Critiques of “(-) Inconsistency in 594 
Performance” declined, and comments about the “(-) Gap in Addressing Needs” 595 
disappeared entirely in 2025, suggesting the new tools were more reliable and better aligned 596 
with the course's domain-specific requirements. Overall, the thematic analysis shows trade-597 
oƯ. The AI upgrade successfully enhanced student experience by providing more powerful 598 
support for problem-solving and prompting a greater sense of independence, while 599 
eliminating previous technical frustrations. However, this was balanced by increased 600 
student apprehension about the potential for overreliance and the risk of shallow learning, 601 
highlighting a critical tension for pedagogy in the age of advanced AI (Xia et al., 2024). 602 
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 603 
Figure 7. Thematic evolution of perceived AI impacts on learning. Heatmap of coded themes 604 
showing the percentage and number of student respondents mentioning each theme in 605 
Spring 2024 (n=12) and Spring 2025 (n=13). Arrows and annotations indicate the trajectory 606 
of each theme's prevalence: Emergent (↑), Evolved (↑), Stable Shift (↑), Stable (—), Declining 607 
(↓), or Disappeared (↓). Students increasingly credited AI with enhancing their 608 
independence and problem-solving skills, while concerns about overreliance grew and 609 
shallow learning emerged. 610 

4.5 Project gains with stable foundational knowledge 611 

The culmination of the preceding shifts in student behavior and perception is evident in the 612 
final performance outcomes, which were measured using the FACT framework to distinguish 613 
between authentic, AI-assisted work and AI-free assessments of foundational knowledge 614 
(Figure 8). The results show a significant improvement in project scores, supported by the 615 
stability of exam scores. Performance on the authentic, semester-long project, where AI use 616 
was permitted, improved significantly. The mean project score rose from 69.92 ± 6.27 in 2024 617 
to 83.11 ± 6.99 in 2025, and a t-test confirms this diƯerence is highly statistically significant 618 
(p < 0.001). Similarly, the median project score increased from 67.50 to 84.75, a diƯerence 619 
that was also found to be statistically significant (Mann-Whitney U test, p = 0.0004). Levene’s 620 
test showed that the variance between the two groups did not change significantly (p = 621 



  

23 
 

0.411). This indicates strong evidence that the upgraded AI tools enabled students to 622 
produce substantially higher-quality work on complex, ill-structured problems.  623 

In contrast, scores on the traditional final exam, which assessed conceptual understanding 624 
and basic skills without AI assistance, remained statistically unchanged across both 625 
cohorts. The mean exam scores (66.81 ± 9.33 in 2024 vs. 64.10 ± 9.22 in 2025) were not 626 
significantly diƯerent (t-test, p = 0.474). Likewise, the median exam score was virtually 627 
unchanged (65.84 in 2024 vs. 65.00 in 2025), a diƯerence that was not statistically significant 628 
(p = 0.6426). Levene’s test showed that the variance between the two groups did not change 629 
significantly (p = 0.455). This stability is a key finding as it suggests that the significant gains 630 
in project performance were not a result of grade inflation or other confounding factors but 631 
were specifically linked to the upgraded AI-assisted workflow. Critically, this finding also 632 
indicates that the increased use of more powerful AI tools did not erode the student 633 
foundational knowledge. Together, these results demonstrate that the AI upgrade 634 
significantly improved applied performance on authentic tasks without compromising core 635 
conceptual understanding. This dual outcome is reinforced by comparative study (S. Xu et 636 
al., 2024) that found that GPT-4o significantly outperforms GPT-3.5 in solving complex 637 
mathematical problems, particularly those requiring multi-step reasoning, logical 638 
consistency, and code execution. The improved performance observed by S. Xu et al. (2024) 639 
provides a mechanism for the project score improvements in our 2025 cohort. The enhanced 640 
reasoning and coding capabilities of the upgraded toolset resulted in improved capability of 641 
tackling the ill-structured, authentic problems in our environmental data science projects. 642 
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  643 
Figure 8. Student performance on project and exam scores. Box plots compare scores for 644 
the AI-assisted authentic project and the no-AI final conceptual and basic-skill exam across 645 
the 2024 (n=12) and 2025 (n=13) cohorts. Statistical annotations show the p-values for an 646 
independent samples t-test (t-p) and a Levene’s test for equality of variances (var-p). The AI 647 
upgrade led to a statistically significant increase in project scores but no significant change 648 
in exam scores. This suggests the intervention improved applied performance without 649 
causing foundational knowledge to erode. 650 

5. Synthesis and implications 651 

5.1 Overview: An AI-aƯordance alignment interpretation 652 

This study demonstrates that when generative AI is better aligned with the performance 653 
phase of SRL and embedded in authentic, ill-structured tasks, it can significantly enhance 654 
student learning outcomes without eroding foundational knowledge. This alignment of 655 
aƯordance, task, and pedagogy resulted in gains across performance, behavior, and aƯect. 656 
Across the 2024–2025 cohorts, a triangulated pattern emerged. First, students 657 
demonstrated behavioral realignment, shifting from peer- and instructor-centric help-658 
seeking to AI-supported, self-reliant strategies. Second, this was accompanied by a marked 659 
improvement in the aƯective climate, with sentiment migrating from cautious neutrality to 660 
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reflective endorsement. Third, these changes translated into measurable gains in applied 661 
performance, with statistically significant increases in project scores under AI-supported 662 
conditions, without erosion in conceptual exam outcomes. This dual outcome validates the 663 
alignment hypothesis. These results mirror what Cai et al. (2024) describe as the 664 
“diƯerentiated impact” of AI where there is a gain in complex, authentic tasks but not in 665 
foundational skill assessments. Specifically, the students' increased ability to complete 666 
open-ended projects demonstrates a higher degree of epistemic agency, which is an 667 
enacted autonomy over the processes of problem framing, solution design, and knowledge 668 
construction (Damsa et al., 2010; Nieminen & Ketonen, 2024; Stroupe, 2014). At the same 669 
time, student stable exam scores confirm that foundational knowledge acquisition was 670 
preserved. 671 

Importantly, the performance, aƯect, and behavior convergences do not seem like an 672 
incidental byproduct of AI upgrade, but a predictable outcome. Such combined gains are not 673 
unexpected when AI capabilities are aligned with the performance phase of SRL and 674 
embedded within authentic, ill-structured tasks. These gains can be attributed to scaƯolding 675 
a range of cognitive and metacognitive processes simultaneously (Azevedo et al., 2022). Our 676 
findings thus suggest that students in 2025, equipped with more capable AI tools, engaged 677 
more autonomously by using AI as support rather than a surrogate (Annamalai et al., 2025). 678 
These findings align with emerging frameworks such as HEAT-AI (Temper et al., 2025) and the 679 
AI Assessment Scale (Perkins et al., 2024), which emphasize task authenticity and regulated 680 
AI use as key to safeguarding deep learning.  681 

Moreover, student written reflections in 2025 exhibit greater personalized introspection. As 682 
seen in statements such as “AI allowed me to develop code and ideas far beyond my 683 
abilities” reflects not only an improvement in eƯiciency, but the emergence of AI as a co-684 
creator of knowledge(Yuwono et al., 2024). Simultaneously, statements such as “AI made 685 
me comfortable with coding and data” reveal its function as a co-regulator, shaping 686 
confidence and cognitive strategy within the learning environment (Molenaar, 2022). In both 687 
cases, technology became more than a tool, it emerged as a co-creator and co-regulator 688 
within student learning environments, supporting the notation of human-AI partnership 689 
(Gonsalves, 2024; Jain et al., 2025; Philbin, 2023). Additionally, subjective ownership reflects 690 
what Tan & Maravilla (2024) identify as a transition from task dependency to competence-691 
building support, fostering a sense of control and eƯicacy that enhances intrinsic 692 
motivation(Annamalai et al., 2025; Tan & Maravilla, 2024). This represents a shift from AI-693 
directed learning where learner is recipient  to AI-supported learning where learner is a 694 
collaborator, which is a need shift to finally move toward AI-empowered learning where 695 
learner is the leader (Ouyang & Jiao, 2021). 696 
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In addition, this intrinsic motivation extended beyond the course. three out of five final 697 
projects from the 2025 cohort are continuing into the summer, a leap not observed in 2024. 698 
In two cases, students were hired as research assistants and are now pursuing peer-699 
reviewed publications on the use of machine learning to study marine harmful algal blooms 700 
(HABs) in the Gulf of Mexico and freshwater HABs in Lake Okeechobee, Florida. These 701 
collaborations, supervised directly by the instructor, suggest that AI aƯordances not only 702 
enhanced performance during the course but empowered students to take intellectual 703 
ownership of their work (Darvishi et al., 2024) and encouraged students to contribute to local 704 
issues and the broader scientific community (Roe & Perkins, 2024). 705 

The results also suggest a pedagogical shift. As AI tools become more capable, instructors 706 
are no longer solely mediators of procedural knowledge. As AI becoming eƯective co-707 
teacher (Niloy et al., 2025), instructor roles are being reshaped toward mentorship for higher-708 
order thinking, guiding students in synthesizing data, interrogating uncertainty, and crafting 709 
analytical narratives. Recent studies confirm this shift, showing that AI enables instructors 710 
to focus less on content delivery and more on facilitating problem-solving and metacognitive 711 
engagement (Kim, 2024; Mollick & Mollick, 2024). This was evident in quantitative and 712 
qualitative shift in oƯice hour dynamics, where students worked more closely and frequently 713 
with the instructor throughout their projects, and where questions evolved from 714 
predominantly syntax and debugging in Spring 2024 to study design and int in Spring 2025. 715 
Thus, the upgraded AI did not merely accelerate task completion, but more importantly 716 
facilitated a redistribution of cognitive load that encouraged students to experiment more 717 
freely. We summarize the causal chain of this study as AI upgrade, behavioral shifts, aƯective 718 
gains, authentic performance gains, and sustained engagement. Accordingly, the alignment 719 
of AI aƯordance with pedagogical purpose does not just result in significant performance 720 
improvements but also suggests transformational shifts in student learning behavior. 721 

5.2 Mechanism of impact: Productive cognitive oƯloading 722 

We propose productive cognitive oƯloading where students oƯload tedious procedural 723 
tasks (e.g., boilerplate coding) to focus on higher-order reasoning, analysis, and problem-724 
framing. AI supported students by reducing extraneous cognitive load especially with 725 
procedural obstacles like debugging allowing for increased germane processing such as 726 
data interpretation and synthesis. This reflects predictions of cognitive load theory that 727 
learners benefit when eƯort is reallocated from routine execution to strategic reasoning 728 
(Sweller et al., 2019). Recent studies show that AI-supported learners exhibit higher-order 729 
integration and metacognitive engagement by fact-checking and challenging AI outputs 730 
(Essien et al., 2024), provided scaƯolds like constructivist learning principles are in place 731 
(Kim et al., 2025; Tan & Maravilla, 2024). Students viewed AI as a partner or as one student 732 
reported “my AI friend” that accelerated troubleshooting, yet it is unclear if that deepened 733 
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conceptual engagement. These findings align with Zhao et al. (2025) who argue that AI can 734 
function as a cognitive amplifier rather than a shortcut when embedded in pedagogical 735 
designs that encourage critical analysis and evaluation such as authentic tasks. On the 736 
other hand, Kosmyna et al. (2025) warn of cognitive debt where students oƯload core 737 
cognitive processes such idea generation and structuring, leading to weaker neural 738 
engagement and potential skill atrophy. However, it remains unclear whether regulating 739 
cognitive oƯloading through productive oƯloading could prevent the "cognitive debt" they 740 
warn against.  741 

5.3 Behavioral shift: Toward resourceful self-regulation 742 

Behaviorally, students shifted from reliance on peers and instructors to autonomous 743 
experimentation and AI-mediated support. This transformation aligns with SRL theory, which 744 
identifies adaptive help-seeking as a sign of increasing learner agency (Zimmerman, 2000). 745 
By providing on-demand support for technical challenges, the AI tool can satisfy learner core 746 
psychological needs for both competence (feeling capable) and autonomy (feeling in 747 
control), which are key drivers of intrinsic motivation to use AI for learning(Annamalai et al., 748 
2025).  Thus, as external tools, AI provides the needed support to help learners tackle 749 
challenges (e.g., coding minutiae and debugging) just beyond their current abilities, 750 
especially when they are still developing fluency in complex domains (Chang et al., 2023; W. 751 
Xu & Ouyang, 2022). This support structure operates within what Vygotsky (1978) termed the 752 
zone of proximal development, which is a gap between what a learner can do alone and what 753 
they can achieve with guidance. As a result, AI alters the help-seeking sequence, 754 
empowering learners to resolve technical issues independently before engaging peers or 755 
instructors for higher-level conceptual questions (Hou et al., 2024; W. Xu & Ouyang, 2022) 756 
especially due the on-demand nature of AI support with minimal social cost (Hou et al., 757 
2024). 758 

5.4 AƯective climate: Empowerment with caution 759 

AƯective responses evolved as AI tools matured. This shift is consistent with broader 760 
findings that student engagement increases when AI is perceived not merely as a utility, but 761 
also as a learning partner (Cai et al., 2024). In 2024, student sentiment was mixed, often 762 
fixated on tool functionality. By 2025, responses were not only more positive, but more 763 
reflective and self-aware. Students frequently described AI as reliable, empowering, and 764 
essential, echoing patterns observed in other studies where AI enabled greater comfort with 765 
complex tasks and improved motivation (Dai, 2024; Ilieva et al., 2023). While many 766 
described AI as empowering and eƯicient, several also voiced concerns about overreliance 767 
or diminished eƯort, what Jose et al. (2025) call the “cognitive paradox” of AI.  Specifically, 768 
Jose et al. (2025) argue that cognitive oƯloading to AI risks weakening metacognitive 769 
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engagement, especially when learners lack the maturity or instructional support to critically 770 
vet AI outputs. This dynamic was mirrored in students’ fears of “superficial understanding” 771 
and “undermined foundational skills”, a concern that emerged from 0% in 2024 to over 15% 772 
in 2025. These findings align with warnings that overdependence on AI can diminish long-773 
term retention and learner confidence (Wilson & Nishimoto, 2024) and lead to cognitive 774 
atrophy (Kosmyna et al., 2025).  Either way, this blend of enthusiasm and critique suggests 775 
learners are not naïve adopters but are beginning to develop what Jose et al. (2025) call “AI 776 
fluency”, which is the discerning ability to engage AI with both appreciation and epistemic 777 
caution.  Such discernment is critical for long-term learning and emphasizes the importance 778 
of preparing ethical and self-regulating learners, who can robustly navigate the double-779 
edged aƯordances of AI in education (Cai et al., 2024; Chang et al., 2023). Yet developing 780 
such discernment is not uniform across learners and is function learner personality traits, 781 
requiring strategies for supporting diƯerent SRL phases (Weng et al., 2024) 782 

5.5 Outcome pattern: Authentic gains without foundational erosion 783 

Statistically, students in the AI-upgraded cohort significantly outperformed peers in 784 
authentic project work while maintaining similarity on AI-free, foundational exams. This dual 785 
outcome supports early findings by Elshall and Badir (2025), who argue that well-aligned AI 786 
tools can enhance applied performance without diminishing core understanding. Similar 787 
hybrid gains are reported by (Awadallah Alkouk & Khlaif, 2024), who recommend bifurcated 788 
assessment models to preserve academic rigor while embracing AI aƯordances. These 789 
findings directly challenge warnings of conceptual decay (Wecks et al., 2024) oƯering 790 
evidence that erosion is contingent on AI-aƯordance alignment with learning needs, course 791 
design, and task characteristics. This study underlines the potential of AI not as a threat to 792 
foundational knowledge (Celik et al., 2024; Essien et al., 2024; Zhao et al., 2025). Rather AI 793 
can improve for authentic learning gains (Cai et al., 2024; Elshall & Badir, 2025), provided AI 794 
use is bound by rules, scaƯolded to provide structured support within these rules, and 795 
aligned to ensure that the rules and support match the learning goals.  796 

5.6 Theoretical implications: Rethinking executive help 797 

Traditionally, executive help-seeking, which is asking for direct answers rather than 798 
guidance, has been viewed as a maladaptive learning behavior. However, this study suggests 799 
that when embedded in authentic tasks, this same behavior with AI can become a 800 
productive scaƯold. Drawing on SRL, recent studies (Chang et al., 2023; Molenaar, 2022) 801 
support this reinterpretation by framing AI as a co-regulator that helps learners move from 802 
dependence to autonomy instead of passively accepting solutions. In other words, executive 803 
help becomes a gateway to metacognitive engagement. This study contributes to an 804 
emerging theoretical pivot, where executive help is not inherently adverse to learning if it 805 



  

29 
 

enables deeper engagement, reflection, and reapplication (Cai et al., 2024; Msambwa et al., 806 
2025). In other words, if AI is part of a thoughtful educational design, this can transform a 807 
potential shortcut into a genuine learning opportunity as the findings of this quai experiment 808 
indicate. 809 

5.7 Pedagogical pivot: Role of instructor and course design 810 

The integration of AI into university classrooms marks a pedagogical inflection point, not 811 
merely a technological shift (Jain et al., 2025; O’Dea, 2024). As AI can absorb lower-order 812 
cognitive tasks (Niloy et al., 2025) such code and content generation, the instructor can 813 
leave AI to support personalization, feedback, and content generation (Chang et al., 2023; 814 
Nguyen, 2025).  Accordingly, the instructor role needs to evolve beyond lecturing toward 815 
mentoring, metacognitive modeling and epistemic coaching (Cai et al., 2024; Mollick & 816 
Mollick, 2024). Mentoring supports students in connecting ideas, reflecting on learning, and 817 
building their own understanding (Mollick & Mollick, 2024). Metacognitive modeling includes 818 
lively demonstrating thought processes and critical skills in action to help students  direct 819 
their own learning (Mollick & Mollick, 2024). Epistemic coaching includes guiding students 820 
to question and evaluate the quality, sources, and limitations of knowledge (Cai et al., 2024). 821 
The importance of this shift is evident in student feedback, with students noting what they 822 
learned most when their instructor modeled how to critically and strategically navigate data 823 
curation with AI assistance. One student noted that this approach helped them not only read 824 
and understand AI-generated code but also catch and correct AI errors, while another 825 
emphasized that the mentoring and hands-on engagement in this course sparked genuine 826 
interest and readiness for real research. This pivot requires rethinking established 827 
frameworks. Nguyen (2025) calls for faculty development around ethical AI integration and 828 
metacognitive modeling, while (Jain et al., 2025) advocate rethinking Bloom’s taxonomy to 829 
include “co-curation” and “ventriloquizing” AI output.  830 

The goal is to design learning experiences that prepare learners to achieve AI fluency (Jose 831 
et al., 2025) instead of being passive operators. This can be achieved through curriculum 832 
strategies aligned with the zone of proximal development, where AI provides scaƯolding for 833 
complex tasks while the instructor guides the crucial stages of synthesis and reasoning (Cai 834 
et al., 2025). For example, in the Environmental Data Science course (Elshall, 2025) the 835 
instructor deliberately guided students through the initial stage of developing research 836 
questions, the intermediate stage of data curation, and the final stages of synthesis. To 837 
ensure sustained engagement, the term-project was structured with mandatory 838 
checkpoints requiring instructor interaction, including a required project approval meeting 839 
before work could begin, a graded interim report to monitor progress and address 840 
challenges, regular oƯice-hour meetings, and a final class presentation before the final 841 
report is due. This design guarantees that while students use AI for execution, their core 842 
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research direction and analytical reasoning are developed and refined through direct 843 
mentorship. To achieve this model, where AI is a tutor and the instructor is a mentor while 844 
preserving student autonomy, course designs must be intentional and structured 845 
accordingly. Thus, guiding students through the challenge of building reliable knowledge 846 
from complex digital sources is no longer optional, but a pedagogical imperative in the AI 847 
era. Table 3 outlines key pedagogical strategies for this structural design. Together, these 848 
principles point to a shift from banning or uncritically adopting AI toward regulating AI. 849 
However, beyond key pedagogical strategies in Table 3, Carvalho et al. (2022) promote co-850 
design of learning between educators and learners to reimagine education and build 851 
adaptive skills for an AI-driven future. 852 
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Table 3. Key pedagogical strategies for AI integration. Course materials, assignments, and 853 
sample exam questions that exemplify these strategies are available (Elshall, 2025). 854 

Pedagogical Strategy Implementation in Course Design 
Course structure: 
ScaƯolded AI integration 

Introduce AI tools progressively where curriculum moves 
from no-AI tasks (non-AI checkpoints) for foundational 
knowledge, to structured AI use on intermediate 
assignments, culminating in open AI use on authentic, ill-
structured projects  

Assessment method: 
Hybrid assessment 
design 

Blend AI-resistant tasks such in-class exams for foundational 
skills, multi-step case study with structured AI-use for critical 
thinking assessment, and AI-assisted authentic projects for 
applied skills assessment  

Support mechanism: 
Mandated instructor 
checkpoints 

Structure projects with required interactions, such as a 
mandatory proposal meeting, a graded interim report, regular 
progress meetings and a class presentation before final 
report due to ensure direct mentorship 

Cultural foundation: 
Process transparency 

Create a partnership and trust with students by transparently 
communicating the pedagogical rationale for the course AI 
policy, explaining why AI is restricted for foundational tasks 
and how to leverage it eƯectively in later, authentic work 

Instructor role: 
Metacognitive modeling 

Instructor "thinks aloud" to demonstrate how to critically 
evaluate AI outputs, data curation with AI assistance, and 
troubleshoot code 

Target skill: 
Metacognitive reflection 

Embed explicit prompts within assignments that require 
students to reflect on why and how they use AI, to encourage 
self-regulation and strategic thinking over simple recording  

Student monitoring: 
Early warning system* 
 

Create an early warning system for overreliance or 
disengagement by for example implementing brief, regular AI 
reflection logs for students to record their AI use, confidence 
levels, and points of confusion  

*Not implemented in this course 855 

5.8 Generalization and transferability 856 

While this study centers on a specific environmental data science course, its findings oƯer 857 
broader implications for scalability and transferability across disciplines and contexts. The 858 
observed benefits, which are enhanced performance on authentic tasks, increased learner 859 
agency, and no erosion in conceptual mastery, reflect structural principles that are not 860 
discipline-bound but depends on alignments between learner regulatory needs, task nature, 861 
and learning goals. Thus, the study design principles are transferable across disciplines with 862 
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tasks that are ill-structured, data-rich, and require open-ended inquiry. These are settings 863 
where learning gains from AI are most pronounced (Cai et al., 2024). This suggests strong 864 
transferability to other domains with similar task profiles such as engineering design. 865 
Moreover, the hybrid assessment model of FACT is not domain specific (Elshall & Badir, 866 
2025). Awadallah Alkouk & Khlaif (2024) argue that hybrid assessment designs as key for 867 
preserving conceptual rigor while using AI as a collaborator in applied performance. 868 
Awadallah Alkouk & Khlaif (2024) findings validate the feasibility of AI-resistant checkpoints 869 
and process-based evaluation across varied educational environments (Table 3).  870 

However, successful generalization hinges on faculty readiness and institutional 871 
scaƯolding. As Fu & Weng (2024) emphasize, without instructor training and curriculum 872 
innovation, AI risks being either underutilized or misapplied. Models like the human-873 
centered AI (Fu & Weng, 2024; Renz & Vladova, 2021) and AI literacy frameworks (Kong et al., 874 
2024; B. Wang et al., 2023) oƯer pathways for the professional development of educators in 875 
diverse settings. Transferability also depends on contextual adaptation. Cheah et al. (2025) 876 
warn that without localized policy guidance and instructional modeling such as meta-877 
cogitative modeling (Table 3), AI integration risks becoming haphazard. Thus, generalization 878 
must be theory-informed but practice-tuned given institutional constraints, disciplinary 879 
norms, and learner profiles (Corbin et al., 2025).  880 

Finally, this study contributes to the emerging paradigm shift (O’Dea, 2024) where AI is not 881 
simply a support tool but a cognitive partner demanding a rethinking of student roles, 882 
instructor identity, and curriculum design (Carvalho et al., 2022; Jain et al., 2025; Jose et al., 883 
2025). As a cognitive partner, AI functions both as a co-regulator (Molenaar, 2022) and co-884 
creator(Yuwono et al., 2024). As higher education enters the AI era, the AI-aƯordance 885 
alignment framework provides a transferable framework to guide responsible and scalable 886 
implementation of AI in diverse learning settings. AI, when used intentionally and aligned 887 
with learning goals, can support not only more learning, but better learning. In other words, 888 
AI integration does not replace the learner but reshapes the task to be more authentic and 889 
represents the instructor as a mentor. This alignment does not undermine but serves 890 
academic integrity and cognitive growth. 891 

6. Study limitations  892 

While quasi-experimental study oƯers promising support for the AI-aƯordance alignment 893 
framework, several limitations constrain generalization and causal inference. 894 

6.1 Small sample size and single-site design 895 

The small sample size (n = 25) limits statistical power, while the single-course, single-896 
institution design limits external validity.  With a small sample size, contextual factors (even 897 
with strong controlled conditions across cohorts) may have shaped outcomes. While eƯect 898 
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sizes for authentic tasks and foundational knowledge performance were large, behavioral 899 
and aƯective trends such as shifts in help-seeking and AI reliance should be interpreted 900 
cautiously. Thus, reported behavioral and aƯective trends are suggestive, and broader 901 
replication across courses and institutions is needed to confirm these patterns. 902 

6.2 Causal inference cautions 903 

Although the AI upgrade was the key intervention, we cannot fully isolate its eƯects from 904 
other cohort-level variables, such as motivation, engagement, or prior exposure. 905 
Equivalence in early scores and experience suggests a fair comparison, but unmeasured 906 
influences (e.g., informal peer support) may have contributed to gains. Thus, casual 907 
inferences should thus be viewed as suggestive, not definitive. 908 

6.3 Data modalities 909 

Though this study used surveys, performance data, and reflections, behavioral insights 910 
relied heavily on self-report. Future work should incorporate system logs, prompt histories, 911 
and fine-grained interaction data to better capture real-time help-seeking behaviors and 912 
distinguish eƯective engagement from passive outsourcing. 913 

6.4 Critical thinking and long-term cognitive impacts 914 

A key limitation of this study is its focus on performance outcomes and foundational erosion 915 
without directly measuring the quality of underlying cognitive processes including critical 916 
thinking. Additionally, we did not directly evaluate whether the observed performance gains 917 
were accompanied by deeper cognitive engagement, or conversely potential long-term skill 918 
or cognitive erosion.  The cognitive-debt hypothesis raised by Kosmyna et al. (2025) remains 919 
a critical and unexamined question in this authentic learning context.  Integrating the 920 
detailed cognitive metrics from lab-based studies (e.g., Kosmyna et al., 2025) into 921 
scaƯolded, semester-long designs like ours is a critical future work to understand if the AI 922 
aƯordance alignment can deliver authentic performance gains while preserving the deeper 923 
cognitive functions that sustain lifelong learning. 924 

6.5 Study contributions and significance 925 

Despite these limitations, this study provides strong quasi-experimental evidence that well-926 
aligned AI integration can improve authentic performance without eroding foundational 927 
knowledge. Acknowledging the abovementioned constraints, the study serves as a valuable 928 
proof-of-concept for the AI-aƯordance alignment framework and establishes a foundation 929 
for future, larger-scale research. Given these constraints, the findings oƯer transferable 930 
insights into designing eƯective, human-centered AI pedagogy. 931 
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6.6 Technological volatility 932 

The above study contributions and significance reflect the capabilities of AI tools at a 933 
specific point in time. As AI tools rapidly evolve, their cognitive aƯordances and associated 934 
learning impacts will shift. Jose et al. (2025) recommend that AI-pedagogy research adopt 935 
rolling or longitudinal designs to capture AI evolving impact. However, we argue that AI is not 936 
merely a technical shift, but a deeper epistemic transition as AI increasingly participates in 937 
regulation and generation of knowledge. Thus, higher education needs to evolve to remain 938 
relevant in an era defined by human-AI collaboration. Specifically, we propose that 939 
pedagogical design is a key constat that transforms AI advancements into learning 940 
opportunities. 941 

7. Societal implications: Higher education in the AI era 942 

7.1 Disruptive innovation  943 

While knowledge creation was once dominated by humans, we are now seeing a shift 944 
towards human-AI co-creation (Jain et al., 2025; Lee et al., 2024; Lim et al., 2023; O’Dea, 945 
2024; Wu & Chen, 2025). Consequently, the integration of AI in higher education 946 
necessitates a shift from traditional content delivery to managing co-agency between 947 
humans and machines (Gonsalves, 2024; Jain et al., 2025; Molenaar, 2022; Philbin, 2023). 948 
Other opportunities include AI as co-teacher (Niloy et al., 2025), human-AI co-creation of 949 
knowledge (Yuwono et al., 2024), and educator-learner co-design of AI-mediated learning 950 
(Carvalho et al., 2022). This is creating a new paradigm of human-AI collaboration where 951 
pedagogy needs to evolve, for example, to teach students how to question, verify, and 952 
ethically manage AI-generated content (Fu & Weng, 2024; Gonsalves, 2024; Nguyen, 2025). 953 
With each major technological advance, students need to acquire new competencies not 954 
only in technical proficiency, but also in higher-order skills such as critical thinking, 955 
delegation, evaluation, and epistemic responsibility (Gonsalves, 2024; Melisa et al., 2025; 956 
Xia et al., 2024). Table 4 illustrates this pedagogical evolution, showing how pedagogical 957 
design can adapt across increasing levels of human-AI collaboration.  958 
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Table 4. Advancement of AI capabilities and required pedagogical shifts 959 

AI AƯordances Description Example  Pedagogical Design 

Pre-generative AI 
(Baseline) 

Tools for calculation 
or information 
retrieval with human 
performing all 
synthesis and 
analysis 

Using Google Search 
to find EPA datasets 
or using statistical 
software to run a pre-
programmed 
regression analysis 

Core competencies: 
Foundational 
information literacy, 
manual research 
skills, data 
interpretation, and 
proficiency with 
specific software 

Foundational AI 
(c. 2022-2024) 

AI as a 
conversational tool 
for brainstorming, 
summarizing text, 
and generating codes 
with human directing 
each step 

Asking AI to write a 
Python code to plot 
pre-cleaned data or 
perform regression 
analysis 

Builds on core 
competencies: 
EƯective prompt 
engineering, critical 
evaluation of AI 
outputs, and 
understanding AI 
ethics 

Multimodal AI 
and early agents 
(c. 2024-Present) 

AI as an interactive 
workbench capable 
of analyzing data, 
interpreting images, 
and executing multi-
step workflows with 
a single command 

Uploading a raw CSV 
of water quality data 
and asking the AI to 
clean, analyze, and 
visualize the trends 
of nitrate levels over 
time 

Expands to include*: 
Designing and 
validating multi-step 
analytical workflows, 
interpreting complex 
AI-generated 
analyses, and 
debugging complex 
AI processes 

Autonomous 
scientific agents 
(hypothetical 
future) 

AI acts as a research 
collaborator, capable 
of independently 
designing and 
executing complex 
projects, from 
hypothesis to 
conclusion 

Providing a high-level 
directive: Investigate 
the impact of recent 
urbanization on local 
watershed and 
propose mitigation 
strategies 

Additionally: Meta-
competencies and 
even re-evaluation of 
human expertise in 
the AI era, which are 
critical areas for 
pedagogical 
research 

* Not implemented in this course 960 

7.2 Designing for human expertise 961 

While current generation models (i.e., multimodal AI and early agents) fail as the complexity 962 
of the task increases (Shojaee et al., 2025) and the precise future of AI aƯordances is 963 
unclear, the hypothetical example of a future autonomous scientific agent in Table 4 serves 964 
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as a thought experiment. As scientific agents continue to evolve (Ren et al., 2025), this 965 
endpoint in Table 4 or comparable examples (Tang et al., 2025) can shape long-term 966 
pedagogical strategies including development of meta-competencies and re-evaluation of 967 
human expertise in the AI era. These meta-competences include ethical grounding and goal 968 
alignment to ensure that as humans delegate tasks to AI, they maintain strategic and 969 
responsible oversight (ChaƯer et al., 2025). This re-evaluation of human expertise includes 970 
shifting focus from routine tasks, which can be automated, to "durable competencies" that 971 
are uniquely human, such as creative problem-solving, strategic thinking, and ethical 972 
judgment (AI Alliance, 2024). In addition, the re-evaluation of human expertise is not merely 973 
an economic question but an existential one (Edelman, 2025; Kulveit et al., 2025). This opens 974 
a critical research domain focused on redefining the nature of uniquely human expertise and 975 
ethical grounding in a digital world with advanced automation (Elshall et al., 2022). 976 

While this study focuses on pedagogical design, the broader impact of AI on higher 977 
education demands a strategic shift from reactive adaptation to proactive integration. As 978 
such AI is not a disruptive innovation to be managed, but to be intentionally integrated with 979 
forward-thinking designs that anticipate evolving AI aƯordances (Carvalho et al., 2022; 980 
O’Dea, 2024). This transition extends beyond pedagogy to require significant curriculum 981 
redesigns that address the evolving demands of an AI-driven society and labor market 982 
(Abbasi et al., 2025; Jaramillo & Chiappe, 2024; Liang et al., 2025). In addition, this transition 983 
is institutional, challenging the longevity of fixed syllabi in favor of adaptive as AI has the 984 
potential to open diƯerent learning pathways (Jose et al., 2025). On the other hand, this 985 
transition presents risks, including the potential for epistemic decline and cognitive atrophy 986 
as learners outsource critical judgment (Kosmyna et al., 2025; H.-P. (Hank) Lee et al., 2025), 987 
the propagation of inherent AI biases (Bender et al., 2021), unresolved questions of 988 
academic authenticity (Nguyen, 2025; N. Wang et al., 2024; Yusuf et al., 2024),  and other 989 
risks reviewed by Sengar et al. (2024). Therefore, instructors and institutions can adopt a 990 
dual strategy by implementing immediate adaptations such as revised assessments and AI 991 
literacy, while proactively preparing for a future defined by dynamic human-AI collaboration. 992 
While this future is speculative, multimodal AI that was emerging (Sengar et al., 2024) is now 993 
an active reality. This requires anticipating how AI capabilities will evolve at diƯerent intervals 994 
and proactively planning pedagogical strategies and curriculum development in alignment 995 
with those trajectories (Jaramillo & Chiappe, 2024; Walter, 2024). Thus, instead of chasing a 996 
moving target, educational design should carefully examine AI future development to 997 
empower learners with transferable competencies that will endure in an AI-driven future. 998 

8. Conclusions 999 

This study examines how advances in AI aƯordances reshape learner approaches to 1000 
learning, particularly their help-seeking strategies and engagement, and how these 1001 
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behavioral shifts translate into performance on tasks varying in authenticity. This study 1002 
provides quasi-experimental evidence by comparing two cohorts in an identically delivered 1003 
environmental data science course, thus isolating the impact of a single generative AI 1004 
upgrade. Results provide evidence that when advanced generative AI tools are aligned with 1005 
authentic learning tasks, significant performance gains can be achieved without eroding 1006 
foundational knowledge. This is shown by authentic project scores rising from a mean of 1007 
68% to 87% (p < .001), while final exam scores remained stable.  The performance gain on 1008 
ill-structured projects without exam impact is accompanied by shifts in student learning 1009 
behavior toward more autonomy and positive sentiment. By redistributing cognitive load, AI 1010 
allowed students to experiment more freely, and accordingly help-seeking behaviors shifted 1011 
from peer reliance toward more autonomous experimentation correlating with the empirical 1012 
findings of Annamalai et al. (2025). In addition, positive sentiment toward AI support 1013 
increased from 41% to 77%, despite the doubled acknowledgement of potential 1014 
over-reliance. Thus, AI upgrade can shift learner behavior toward more autonomy leading to 1015 
aƯective and authentic gains that can determine sustained engagement. However, given the 1016 
study small sample size (n=25), single-site, and short-term, these behavioral and aƯective 1017 
trends should be interpreted with caution and warrant broader replication and examination. 1018 
In addition, this study did not investigate the impact of AI upgrades on student critical 1019 
thinking and cognitive development. 1020 

Given these findings and limitations, our central proposition is that the convergence of 1021 
improved performance, adaptive behavior and positive aƯect is not an automatic result of AI 1022 
upgrade alone, rather AI upgrades improve learning when paired with eƯective pedagogical 1023 
design. This highlights the importance of pedagogical design to cope with advances in AI 1024 
tools. Specifically, aligning AI aƯordances with task authenticity, pedagogical goals, and 1025 
learner self-regulatory learning needs is key for improving learning outcomes.  This can be 1026 
achieved through pedagogical strategies including scaƯolding AI use, blending assessment 1027 
methods, mandating instructor checkpoints, active instructor mentoring, and promoting 1028 
metacognitive modeling and reflection as implemented in this study. Thus, advances in AI 1029 
can continue to improve learning provided that eƯective pedological design is in place. In 1030 
other words, the intentional alignment of AI with pedagogical purpose is a critical 1031 
mechanism for improving learning while safeguarding learner agency. Future research 1032 
should test AI-aƯordance alignment frameworks in larger, more diverse settings and explore 1033 
both short and long-term positive and negative eƯects.  1034 

Finally, our empirical case study, which operationalizes this AI-aƯordance alignment 1035 
framework, oƯers insights for future work on pedagogical design in STEM education. Our 1036 
findings show that when AI aƯordances are properly aligned, learners become more self-1037 
directed and excel on authentic tasks without impacting conventional assessments. This 1038 
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aligns with an emerging pedagogical pivot, especially for research-based courses with a 1039 
focus on ill-structured problems. In other words, AI as a co-teacher (Niloy et al., 2025) can 1040 
absorb lower-level procedural tasks, freeing instructors to mentor higher-order inquiry and 1041 
creative synthesis. This continual redefinition of instructor and learner roles demands a 1042 
forward-looking educational design that enables STEM learners not only to endure, but also 1043 
to thrive in an AI-driven future. 1044 
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