- 1 Collaborative modeling-based evaluation of groundwater sustainability in coastal aquifers using
- 2 simulation optimization
- 3 Ahmed S. Elshall^{1,2,3*}, Mewcha Amha Gebremedhin^{1,10}, Leah L. Bremer^{4,5,6}, Kimberly M. Burnett^{,6}, Aly I El-
- 4 Kadi5^{,7}, Christopher A. Wada^{,6}, and Ming Ye^{8,9}

- 6 ¹ Department of Bioengineering, Civil Engineering, and Environmental Engineering, U.A. Whitaker
- 7 College of Engineering, Florida Gulf Coast University, Fort Myers, FL, USA
- 8 ²The Water School, Florida Gulf Coast University, Fort Myers, FL, United States
- 9 ³DENDRITIC: A Human-Centered Artificial Intelligence and Data Science Institute, Florida Gulf Coast
- 10 University, Fort Myers, FL, United States
- ⁴ Institute for Sustainability and Resilience, University of Hawai'i at Mānoa, Honolulu, HI, USA
- 12 ⁵Water Resources Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
- 13 ⁶ University of Hawai'i Economic Research Organization, University of Hawai'i at Mānoa, Honolulu, HI,
- 14 USA
- 15 Department of Earth Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
- ⁸ Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
- ⁹Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA
- 18 ¹⁰Institute of Geoinformation and Earth Observation Sciences (I-GEOS), Mekelle University, Mekelle,
- 19 Ethiopia

20

*Correspondence: <u>aelshall@fsu.edu</u>

Abstract

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Sustainable groundwater management in coastal aquifers requires methods that are both scientifically robust and responsive to socio-ecological complexity. This paper introduces a collaborative modeling-based simulation optimization framework that integrates stakeholder participation with state-of-the-art hydrologic simulation and evolutionary optimization. The methodology operationalizes groundwater sustainability by combining (i) stakeholder co-design of objectives, constraints, and scenarios; (ii) a climate-sensitive recharge estimation module; (iii) a three-dimensional, variable-density groundwater flow model; and (iv) a parallelized Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for multi-objective optimization. Participatory processes were engaged in every phase of the modeling lifecycle, ensuring that scientific assessments are not only technically valid but also socially legitimate and policy relevant. Optimization routines are configured to efficiently explore high-dimensional decision spaces, making the framework tractable even in real-world planning environments. Collaborative modeling-based simulation optimization provides a reproducible pathway for co-producing groundwater sustainability strategies that balance environmental protection, economic development, and cultural values across diverse hydrogeological settings. While demonstrated in the context of Hawai'i's Pearl Harbor aquifer, the approach is designed for global applicability in regions facing climate stress, land-use pressures, and aquifer governance challenges.

1. Introduction

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66 67

68

69

70

71

72

73

In recent years, water resources and environmental managers are increasingly shifting toward participatory and collaborative modeling with diverse stakeholders (Gray et al., 2018; Hedelin et al., 2021; Jordan et al., 2018; Langsdale et al., 2013; Sterling et al., 2019; Voinov et al., 2018, 2016; Shuler and Mariner, 2020; Ocampo-Melgar et al., 2022; Salas and Pennington, 2024). In comparison to participatory modeling, collaborative modeling refers to a high degree of participation and cooperation between the modeling team and stakeholder (Basco-Carrera et al., 2017a). Hereinafter, for simplicity, we use the term participation modeling to refer to both participatory and collaborative modeling with stakeholders unless otherwise specified. A stakeholder is a person, group, or entity that has an interest and concern, can significantly impact, and is influenced by the topic of concern (Elshall et al., 2020a; Martinez-Santos et al., 2008). Stakeholders in water resources management include water regulators, water managers, experts, specific water users and interest groups, and the public. Participatory modeling can be adopted through any phase or the entire modeling process to support groundwater management decisions. Phases of the modeling process include the model study plan, model building and evaluation, model-based analysis and decision support. These phases further extend to the implementation and monitoring of the water management decisions with model support, and post implementation review of the water management decisions with corresponding model updates. Through trans-academic research and co-production of knowledge with stakeholders, participatory groundwater modeling improves the merits of the scientific assessment (Mussehl et al., 2023; Ricart and Kirk, 2022). Participation adds credibility, legitimacy, and saliency to the scientific assessment (Cash et al., 2003) as well as to the modeling process through improving the technical merits and quality of the model. As emphasized by Zare et al. (2021), improving the modeling process requires the modeling team and stakeholders to evaluate the effects of each modeling assumption and decision. For example, Martin et al. (2021) show that integration of end-users' knowledge through group model building is an essential component to enhance the effectiveness of nature-based solutions such as the reduction of pumping rates, managed aquifer recharge, soil conservation practices, vegetation cover increase, and increasing citizen awareness. Participatory modeling adds credibility to the modeling process through consensus building. Groundwater management deals with a complex social and economic system, where significantly different views are upheld even within the main stakeholder collectives (Henriksen et al., 2007; Langsdale et al., 2013; Martinez-Santos et al., 2008). Stakeholders often hold valuable knowledge about socio-environmental

dynamics and a participatory-based model acts as a boundary object to collectively reason about environmental and water resources problems (Gray et al., 2018). A boundary object is any object that is part of multiple technical disciplines and social worlds that facilitate communication among them. Accordingly, participatory modeling helps to raise awareness and facilitate discussion with and among stakeholders, which can lead to consensus building (Iwanaga et al., 2020; Zare et al., 2021).

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Additionally, participatory groundwater modeling adds legitimacy to the modeling process resulting in stakeholder a more comprehensive, equitable, and inclusive modeling process. Collaborative modeling combines technical skills such as understanding of the water-ecology-human system, and process skills such as understanding the institutional setting, stakeholder engagement, and trust building to make water resources management an equitable, inclusive, and effective process (Langsdale et al., 2013). For example, Manda and Klein (2014) assessed the process of stakeholder involvement and found that public participation and procedural justice played major roles in resolving groundwater resource management problems in eastern North Carolina, and resulted in an effective plan that ensures the long-term sustainable use of groundwater. Participatory groundwater modeling adds saliency to the modeling process through responding to actual community needs at the right time and location. Through participatory modeling, an adequate qualitative overview and shared vision of the problems can be attained, realistic modeling scenarios can be devised, and stakeholder preferences with respect to management alternatives can be identified and evaluated (Hadley et al., 2021; Iwanaga et al., 2020; Martinez-Santos et al., 2008; Molina et al., 2011). Specifically, future pumping conditions (e.g., preferred locations and aquifer formations for new wells, and distribution of future pumping between existing and new wells) can better be defined based on stakeholder preferences than by the modeling team (Hadley et al., 2021). Also, to explore sustainable water management options with possible futures of farm profitability and ecological outcomes, Iwanaga et al. (2020) show that participatory modeling was critical for understanding issues and concerns surrounding ecological aspects, improving modeling assumptions, and identifying potential management opportunities and intention to adopt them. Overall, the abovementioned examples show that adding credibility, legitimacy, and saliency to the modeling process through participatory modeling can lead to more effective and readily adoptable groundwater management decisions (Elshall et al., 2020a).

Additional advantages of participatory modeling that are particularly significant for groundwater sustainability include policy compliance and awareness raising. Participatory modeling is not only required for knowledge synthesis and tackling uncertainty, but active stakeholder involvement is also a groundwater sustainability policy requirement in many locations worldwide, as indicated in the State

Water Code of Hawai'i (1987), the National Water Act of South Africa (1998), the European Union Water Framework Directive (WFD, 2000), the National Water Initiative in Australia (2004), and the California Sustainable Groundwater Management Act (SGMA, 2014), among others (Elshall et al., 2020a, 2022). Additionally, participatory modeling helps to raise awareness among stakeholders (Iwanaga et al., 2020; Martin et al., 2021; Mayer et al., 2017; Zare et al., 2021). One case, Mayer et al. (2017) evaluated three participatory modeling workshops to develop integrated water resources management strategies in a water-stressed basin in Sonora México, and the evaluation indicates that participants believed their modeling abilities increased and beliefs in the utility of models. Awareness raising is particularly important because sustainable groundwater management requires aware and involved citizens (Tuinstra and van Wensem, 2014), and because human behaviors can be a root cause of unsustainability as well as part of the solution (Castilla-Rho, 2017a; Castilla-Rho et al., 2017, 2019).

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

This study fills a gap in the literature on collaborative modeling based simulation optimization for groundwater decision support. Simulation optimization is a commonly used approach in groundwater management (Gorelick et al., 2015; Hesamfar et al., 2023; Mishra et al., 2023). Simulation optimization integrates a simulation model with an optimization algorithm to identify feasible solutions given the management objectives. Simulation optimization has been widely used in many groundwater management applications, including groundwater contamination remediation and source identification (Elshall et al., 2020b; Li et al., 2021), monitoring network design (Song et al., 2019), hydroeconomic modeling (Mulligan et al., 2014a), optimizing hydrological and farming processes (Fowler et al., 2015), coastal aquifer management, and groundwater sustainability evaluation (Delottier et al., 2017; Farhadi et al., 2016; Yazdian et al., 2021). Different variants of participation-based modeling in water resources management literature are referred to as participatory modeling, participatory simulation, participant(s) modeling, collaborative modeling, cooperative modeling, companion modeling, interactive modeling, mediated modeling, fast integrated systems modeling, group model building, computer-aided dispute resolution, computer-aided negotiation, and shared vision planning (Basco-Carrera et al., 2017b; Langsdale et al., 2013). Our systematic review of peer-reviewed literature indicates that few studies have addressed participatory modeling-based simulation optimization for groundwater management. For instance, Raei et al. (2017) integrated a bioremediation simulation model with multi-objective optimization for optimal design of in situ groundwater bioremediation system, considering preferences of stakeholders. Similarly, Fowler et al. (2015) coupled the MODFLOW-FMP2 groundwater model with an optimization framework to identify trade-offs in crop selection under water-limited conditions. These two studies highlighted that participatory modeling combined with optimization is essential not only for

dialogue but also for quantifying competing objectives and identifying management strategies acceptable to multiple stakeholders.

This study addresses a critical gap in groundwater management by introducing a novel framework that formally integrates collaborative modeling with simulation optimization. The primary methodological advancement is a process where stakeholder participation directly informs the formulation and analysis of complex management strategies using simulation optimization, ensuring that solutions are not only technically optimal but also socially relevant and legitimate. We demonstrate this stakeholder-driven method by developing and applying a simulation-optimization tool to evaluate the sustainable yield of the Pearl Harbor aquifer in Hawai'i, which serves more than one-third of the state's population. This application showcases the framework's innovative capabilities for advancing management of coastal aquifers with ecological constraints. By operationalizing stakeholder knowledge within a rigorous quantitative framework, this work offers a transferable method for advancing groundwater sustainability in complex coastal regions worldwide.

2. Case study

2.1 Groundwater sustainability policy in Hawai'i

Modern groundwater management in Hawai'i is continuously developing to better align with groundwater policy in the state. The state-mandated water code stipulates that the water regulators should estimate groundwater sustainable yield for all major aquifer systems in Hawai'i (HRS Chapter 174C, 1987). As such, sustainable yield evaluation is a major component of the Hawai'i Water Resources Protection Plan. The State Water Code (HRS Chapter 174C, 1987) defines sustainable yield as "the maximum rate at which water may be withdrawn from a source without impairing the utility or quality of the water source as determined by the commission." The commission refers to the Commission on Water Resources Management (CWRM), which is the state water regulator. The definition of "without impairing the utility or quality of the water source" involves a large number of aquifer performance and governance factors. Sustainable yield has been widely calculated in Hawai'i using an analytical model known as the robust analytical groundwater flow and salinity transport model (Liu, 2007; Liu and Dai, 2012). RAM2 is based on the seminal work of Mink (1981) that developed the robust analytical model (RAM) for estimating sustainable yield in Hawai'i. Rigorously derived from groundwater flow and transport equations, RAM2 is a simple mathematical tool to estimate aquifer yield in basal coastal aquifers by simulating the variation of the hydraulic head and the expansion of the transition zone under pumping stress. RAM2 is an easy-touse model with only few parameters that can be applied satisfactorily with limited field monitoring data

(Liu and Dai, 2012). However, the RAM2 model has two limitations. First, it estimates only safe yield since it does not account for induced recharge. Induced recharge is part of the groundwater captured due to groundwater development. Induced recharge includes leakage from surface water bodies, recharge in areas that previously discharged groundwater to the surface and increase in lateral inflow (in administratively defined but physically unbounded groundwater formations). Also, RAM2 lumps leakage into one term. Accordingly, RAM2 does not provide insights about separate leakage components such as submarine groundwater discharge, spring discharge, base-flow, evapotranspiration, drains, and decrease in lateral inflow. Quantifying different leakage components is important for managing groundwater dependent ecosystems, which is a stakeholder priority in Hawai'i (Adler et al., 2018). Second, RAM2 is a lumped model that does not provide insights about the spatial distribution of withdrawals with respect to the spatial distribution of hydraulic conductivity, dispersity, porosity, recharge, and other model parameters. For example, (Oki and Meyer, 2001) compare results obtained by a distributed numerical model and by RAM with field measurements and find that RAM underestimates water-level declines in areas where a low-permeability confining unit exists, and in the vicinity of withdrawal wells. This can result in aquifer yield overestimation. The current permitted withdrawal scheme in the study area based on the RAM2 solution overestimates sustainable yield by at least 30% as shown in the supplementary material (Elshall and Gebremedhin, 2025). Accordingly, using a distributed finite-element density-dependent flow model is needed to overcome these challenges along with an optimization algorithm to operationalize the sustainable yield policy in Hawai'i.

2.2 Simulation optimization problem

189 2.2.1 Method justification

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

190

191

192

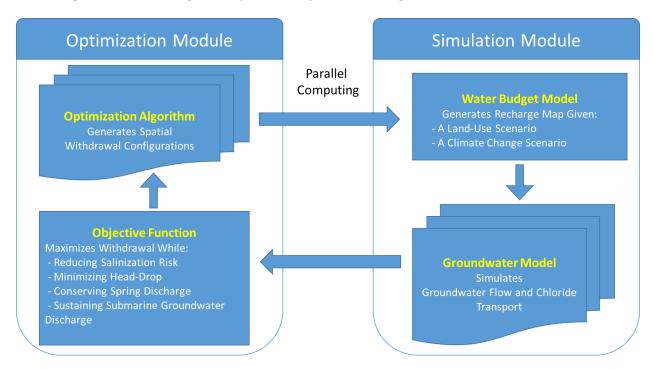
193

194

195

196

197


198

199

200

In response to the need to improve the decision support tools related to sustainable yield management, we developed a simulation optimization tool to evaluate sustainable yield in Hawai'i. Simulation optimization is a commonly used technique in groundwater management (Gorelick and Zheng, 2015) that solves an objective function stating the management objectives aided by the simulation models and an optimization algorithm to find optimal management solutions. The management objectives, which were identified through stakeholder engagement, include minimizing saltwater intrusion and drawdown, and controlling spring discharge and submarine groundwater discharge. The Pearl Harbor aquifer system, which is an important aquifer system serving a population of about half a million people in Hawai'i is used as a prototype. The simulation optimization method was formulated based on a stakeholder driven modeling process using United States Geological Survey (USGS) developed models that are trusted by the stakeholder in the state. The finite element groundwater SUTRA model of Pearl Harbor (Oki, 2005) was

used to simulate density dependent groundwater flow. The Hawai'i Water Budget Model (HWBM, Engott et al., 2017) is used to generate recharge maps for different climate and land-use scenarios. Given the objective function, the simulation optimization procedure consists of the optimization algorithm CMA-ES (Hansen et al., 2003) that links the management objectives with the HWBM and the groundwater density dependent flow model. To permit feasible computational cost, the simulation optimization runs are carried out using parallel CMA-ES (Elshall et al., 2015). This simulation optimization tool can be used to evaluate sustainable yield under different natural processes and societal preferences. Natural processes include the impact of climate change on top recharge, in-land lateral boundary recharge, and sea level rise. Societal preferences include withdrawal management schemes that account for different ecological constraints on spring discharge and land-use scenarios. The simulation optimization procedure to address different groundwater management questions is presented in Fig. 1.

213 Fig. 1: Simulation optimization procedure to address different groundwater management questions

2.2. Problem formulation

Assuming a linear combination of multiple objectives, the problem of finding an optimal solution can be stated as the following minimization function:

$$\min_{z \in \Omega_z} f(z) = \min_{z \in \Omega_z} \sum_{k=1}^{K} -f_k \tag{1}$$

where f is the objective function that is generally formulated in a minimization convention; $\mathbf{z}(\mathbf{u},\mathbf{w})$ is a vector of decision variables that consists of a vector \mathbf{u} of state variables and a vector \mathbf{w} of decision variables; $\Omega_z = \Omega_u \cup \Omega_w$ is the feasible region of the decision variables \mathbf{z} as represented by a set of constraint equations such that Ω_u represents the feasible region of the state variables \mathbf{u} , and Ω_w represents the feasible region of the decision variables \mathbf{w} . Given two objective functions K=2, our state variables $\mathbf{u} \in \{u_1, u_2\}$ are the pumping wells chloride concentration and drawdown, and spring discharge, respectively. When K>1 the optimization problem is termed multi-objective. The decision variables, \mathbf{z} , are withdrawals at the pumping wells. Our constraints are the minimum or maximum thresholds, which the state variables \mathbf{u} should not violate.

Our objective is to find the maximum allowable withdrawal without violating these constraints. For any number of pumping wells, we used a withdrawal dependent objective function

229
$$f_1 = \sum_{i=1}^{m} r_i \times q_i \times p_i \quad \begin{cases} p_i = -1 \ \forall W_{i,obs} > W_{i,threshold} \\ p_i = 1 \ \forall W_{i,obs} \leq W_{i,threshold} \end{cases}$$
 (2)

such that the solution will be penalized if the chloride concentration or drawdown $W_{i,obs}$ in any pumping well i exceeds the chloride concentration or drawdown threshold $W_{i,threshold}$ for that pumping well; q_i is the withdrawal of pumping well i; p_i is a penalty term. The weighting term r_i represents the relative importance of pumping well i and we assume equal weighting for all decision variables. We observe the chloride concentration and drawdown $W_{i,obs}$ at the end of the simulation period. The spring objective function is a hard penalty constraint

236
$$f_2 = 4000 \times p \quad \begin{cases} p = -1 \ \forall S_{Obs} < S_{threshold} \\ p = 0 \quad \forall S_{Obs} \ge S_{threshold} \end{cases}$$
 (3)

where S_{obs} is the total spring discharge observed at the end of simulation period; $S_{threshold}$ is the spring discharge threshold for all springs combined; p is a penalty term for total spring discharge. The parameterization of this simulation optimization problem, such as selection of decision variables, design period, and threshold values were informed by technical experts.

3. Collaborative modeling for simulation optimization problem formulation

3.1 Overview

Collaborative modeling tools were developed through several activities, including a participatory approach with multiple government agencies to design land use scenarios (Bremer et al., 2021), and social learning activities with community members to better understand relational values and prioritize important ecosystem services that are related to spring discharge (Burnett et al., 2020). Here we report the collaborative modeling method that we used to formulate the simulation optimization problem. To simultaneously integrate model building with a participatory process, Langsdale et al. (2013) developed guiding principles and best practices for collaborative modeling for decision support in water resources. To help standardize the field of participatory modeling, Gray et al. (2018) developed a reporting approach for the conceptual, procedural, and technological design of the participatory modeling. To address the complexities of groundwater sustainability, this study introduces a collaborative modeling framework that integrates and extends the guiding principles of Langsdale et al. (2013), while using the standardized reporting method of Gray et al. (2018) as illustrated in Fig. 2. The reporting approach of Gray et al. (2018) has four components—purpose (why), process (how), partnership (who), and products (what)—the first three of which are presented in this section. The fourth component is presented in the results and discussion section (Section 4.2).

Collaborative modeling		
Reporting	Guiding Principle	
Purpose (Why)	 Collaborative modeling is appropriate for complex, conflict-laden, decision-making processes where stakeholders are willing to work together The model addresses questions that are important to decision makers and stakeholders 	
Process (How)	 3. The model supports the decision process by easily accommodating new information and quickly simulating alternatives 4. Collaborative modeling builds trust and respect among parties 	
Partnership (Who)	5. All stakeholder representatives participate early and often to ensure that all their relevant interests are included6. Collaborative modeling requires both modeling and facilitation skills	
Product (What)	7. Both the model and the process remain accessible and transparent to all participants.8. Parties share interests and clarify the facts before negotiating alternatives.	

Fig. 2: Collaborative modeling methodological framework to develop simulation optimization tool for decision support in groundwater sustainability following the guiding principles from Langsdale et al. (2013) and standardized reporting approach from Gray et al. (2018).

3.2 Purpose

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

Following the reporting approach in Fig. 2, we described the participation purpose and the model purpose alongside Principle 1. We included stakeholders in the modeling process for several purposes. First, participation is an integral policy component in Hawai'i in that the Commission on Water Resource Management is obliged to cooperate with agents for "the purpose of utilizing and conserving the waters of the State, and assist these organizations and agencies in coordinating the use of their facilities and participate in the exchange of ideas, knowledge, and data with these organizations and agencies" (§174C-5, HRS Chapter 174C, 1987). Second, this participation process is imperative to attain an adequate qualitative overview of the problem, and a shared vision of the problem with stakeholders (Martinez-Santos et al., 2008; Molina et al., 2011). Third, collaborative modeling as a form of participation can lead to more effective solutions being identified and adopted (Watson, 2005). This is mainly because participation involves tapping into institutional knowledge, exchange of experiences, deeper understanding, consensus building, and raising commitment toward resource management (Carr et al., 2012; Castilla-Rho, 2017b; Mays, 2013). Stakeholder input in this case is broadly useful, ranging from understanding historical factors and local knowledge, to devising realistic modeling assumptions, scenarios, and management alternatives. In addition, collaborative modeling makes the developed simulation optimization framework applicable to the stakeholders' decision-making context, and ensures that the knowledge and needs of the stakeholders are incorporated in the simulation optimization framework (Gray et al., 2018). Additionally, collaborative modeling allows stakeholders to vet, correct and improve modeling assumptions. Finally, collaborative modeling is an effective uncertainty analysis method. As shown below, this collaborative modeling approach is helpful for dealing with uncertainty related to the complexity of the socioeconomic system that is difficult to address otherwise.

The adopted simulation optimization framework has several purposes and multiple problems to address. According to Principle 2 illustrated in Fig. 2, collaborative modeling prioritizes designing the model based on its intended purpose, rather than developing a technically driven model first and finding users afterward (Langsdale et al., 2013). As each model has specific purposes, understanding the model's purposes is important to decide on the model scope and level of analysis. With respect to improving hydrologic and environmental decision-making in the context of groundwater sustainability in Hawai'i, the main purpose of this simulation optimization framework is the proof of concept of the value of numerical modeling within a simulation optimization framework to evaluate groundwater sustainability.

The use of an analytical model such as RAM2 versus a numerical model such as SUTRA is a highly debated topic as reviewed by Elshall et al. (2020). Analytical models can be inadequate for evaluating groundwater sustainability (Henriksen et al., 2008; Kalf and Woolley, 2005; Mulligan et al., 2014b) because they lack the ability to simulate various leakage components, their treatment of the interaction between inflow and outflow components is often not rigorous, and they are typically not designed to consider spatiotemporal relationships. While analytical models are subject to criticism, the choice of analytical model versus numerical model is case-specific and depends on data availability, sustainability factors of interest, and aquifer type (Elshall et al., 2020a). Yet apart from the advantages and disadvantages of analytical models, there is a need for a tool to evaluate groundwater sustainability in Hawai'i that can flexibly account for hydrological systems, groundwater-dependent ecosystems and human activities under different natural and anthropogenic stresses. Serious challenges of groundwater sustainability are arising in coastal aquifers due to climate change and socioeconomic development (Michael et al., 2017).

The situation in Hawai'i and similar islands is more critical due to their special hydrological features and sea level rise combined with anthropogenic impacts causing water stress (Werner et al., 2017). Evaluating groundwater sustainability with respect to these challenges requires integrating hydrologic models with different constraints such as socioeconomic demographics, human activities, societal preferences, groundwater dependent ecosystems, climate change impacts and mitigation, and regulations, among other aquifer performance and governance factors (Alley, 2018; Custodio, 2002; Gleeson et al., 2012; Griffioen et al., 2014; Kalf and Woolley, 2005; Pierce et al., 2013; Rudestam and Langridge, 2014; Sikdar, 2019). Illustrating the essential factors to consider when evaluating groundwater sustainability, as shown in Fig. 3, can be useful in collaborative modeling to understand the scope of the evaluation. Several of these factors Fig. 3 are considered in this study. With respect to recharge rates and storage conditions we consider climate change, land use and landcover change impacts, drawdown, natural and induced recharge, and storage. With respect to water quality, we consider saltwater intrusion. With respect to capture, discharge rates, and environmental flows we consider beneficial usages for springs and submarine groundwater discharge. With respect to facilities and technologies we consider pumping, nature-based infrastructure, and desalination for groundwater substitution. With respect to legal and institutional constraints we consider water rights, restrictions on production well locations and depths, restrictions on specific activities, and sustainable yield policy. With respect to societal values and preferences we consider mainly instrumental, intrinsic, relational and aesthetic values. With respect to economic feasibility, we consider and discuss groundwater substitution and pumping costs, although these factors are not quantitatively incorporated into the model. Combining these different aquifer performance and governance factors requires a modular tool. We demonstrate how this modeling framework can better address major concerns such as incorporating aquifer governance parameters related to groundwater usage and accessibility, spring discharge, sea level rise, and future recharge scenarios into groundwater sustainability evaluation in Hawai'i.

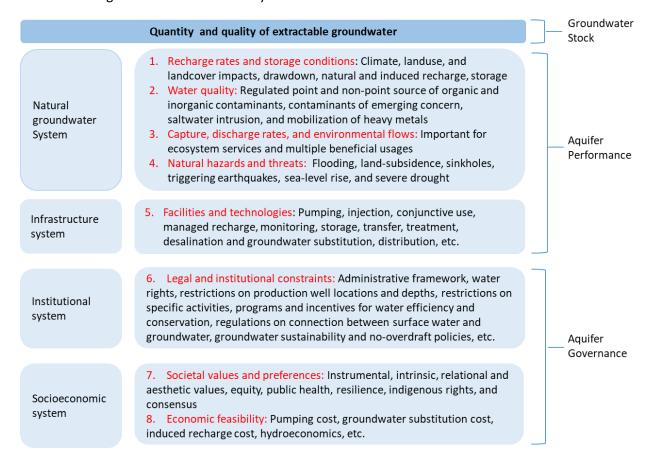


Fig. 3. Factors to consider for groundwater sustainability evaluation modified from (Elshall et al., 2020a)

3.3 Process

Process reporting includes reporting the level of participation, interaction between the participants and the model, and the relationship between the collaborative modeling and the decision-making process (Gray et al., 2018). We used collaborative modeling to formulate the simulation optimization problem. Collaborative modeling refers to a high degree of participation and cooperation between the modeling team and stakeholder. Given the ladder of participation and types of cooperation chart proposed by (Basco-Carrera et al., 2017a), our approach is a discussion and co-design type of participation that is more than just consultation, but less than co-decision making, and a collaboration type of cooperation that is more than just unilateral action or coordination, but less than joint-action as shown in Fig. 4. Given this level of participation, the simulation optimization framework is constructed based on the stakeholder

knowledge, which increases the degree of model transparency and the stakeholder understanding of model assumptions.

340

341

342343

344

345

346

347

348

349

350

351

352

353

354

355

356357

358

359

360

361

362

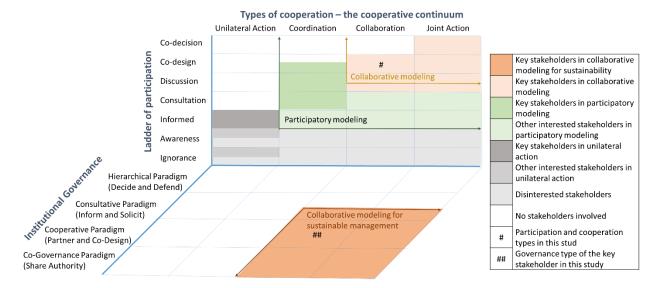


Fig. 4. Framework for stakeholder engagement integrating institutional governance of key stakeholders with the type of participation and cooperation, extended and modified from the ladder of participation and types of cooperation chart proposed by (Basco-Carrera et al., 2017a).

The interaction between the participant and the model is based on a technocratic version of the modeling framework that serves as a boundary object to facilitate the co-design of the modeling framework with stakeholders. The Principle 3 in Fig. 2 focuses on integration and resolution of many issues rather than the depth and precision, and thus keeping the model relatively simple and at a high level is recommended at this stage, and then detailed and precise analysis can be conducted after prioritizing options (Langsdale et al., 2013). The modeling team developed a simulation optimization procedure from a purely hydrologic perspective regardless of the social context. Thus, assumptions about decision variables, initial conditions, observation points, among other settings were set based on the research team's general modeling experience, rather than hands-on experience about aquifer management. For example, our decision variables z are either selected pumping wells or pumping clusters. Optimizing withdrawal of the 92 pumping wells in the study area is a high dimensional problem. This is computationally unfeasible since the iteration size n and the number of iterations to reach convergence increase with the number of decision variables m. Also, having a high dimensional problem is not technically recommended since a large number of decision variables can cause solutions non-uniqueness, resulting in multimodality. A common approach to reduce the problem of dimensionality is to group pumping wells into clusters such that the number of decision variables m is the number of pumping clusters instead of the number of pumping wells (Pholkern et al., 2019). We grouped the 92 pumping wells

into 20 clusters based on spatial proximity using the k-mean clustering method as shown in supplementary material (Elshall and Gebremedhin, 2025). Although this is a reasonable assumption, it does not tap into the local knowledge of aquifer managers. Similarly, we made reasonable assumptions about other settings as shown in Table 1, and obtained simulation optimization solutions that serve as a starting point for the co-design process.

We presented the developed simulation optimization method and solution to promote collaborative learning in line with Principle 4 in Fig. 2. The meeting agenda was designed to first introduce the project and modeling assumptions, and then ask participants to contribute to the model development through providing data, improving model assumptions, validating outputs, prioritizing important scenarios, and providing insights from real-life experiences about the aquifer. Langsdale et al. (2013) note the importance of positive relationship building, beyond simply bringing people together. In particular, when emotional participants tend to be more open to discussion and accepting new ideas. Additionally, involving trusted and respected community members in the modeling team can greatly aid positive relationship building. In this case study, these factors helped to develop a shared or co-learning approach, which is a form of collaborative learning, where information flows from research team to stakeholder and vice versa (Basco-Carrera et al., 2017a). As such, the research team presented the simulation optimization method, problem formulation, solution and capabilities to the stakeholder for feedback. The resulting discussions, which tapped into the stakeholder's collective knowledge about the aquifer, supported the co-design of the simulation optimization problem. The stakeholder's collective knowledge includes (1) well-rounded knowledge about aquifer stakeholder regulations including relationships with other stakeholders, (2) hands-on experience about aquifer management including experience about the most relevant hydrogeological features of the aquifer and social dynamics of the aquifer management, and (3) an in-depth understanding of aquifer users' perceptions, concerns and preferences. Such collaborative learning assists in the acquisition of collective skills and increase in individual knowledge within the social context (Basco-Carrera et al., 2017a). In addition, this collaborative learning and co-design directly relates the modeling framework to the decision context.

3.4 Partnership

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

Partnership reporting involves reporting the participant selection process, and the steps participants are involved with. Identifying stakeholders and defining avenues for participation is largely contextual (Carr et al., 2012; Kusters et al., 2017). The stakeholder selection process in this case study is straightforward as there is no need to extend the collaborative modeling beyond key stakeholders. As connections are made first, defined by the Hawai'i (HRS Chapter 174C, 1987), the main stakeholder with

respect to sustainable yield evaluation in the state is the Commission on Water Resource Management (CWRM), which is the state water regulator. According to Principle 5 Fig. 2by Langsdale et al. (2013), all stakeholder representatives should engage early and frequently to ensure that their relevant interests are adequately represented. A common policy practice is that the general public (Elshall et al., 2020a). CWRM acts as a representative for community members and entities who have interest and concern about groundwater as it includes members most directly involved with the model building team, communicate with key stakeholders, who act as a trusted link to interested parties. Thus, the CRWM inputs are intended to ensure that the interests of the wider community are represented, and alternatives are evaluated, while attempting to balance the many diverse interests, in order to identify the most beneficial decision. A second important stakeholder is the local water manager in the study area, Board of Water Supply (BWS), a semi-autonomous agency that manages O'ahu's municipal water resources and distribution system.

The nature of the partnership, as defined by institutional governance, is a key dimension when considering sustainable groundwater management or sustainability in general. This dimension, as shown in Fig. 4, captures the fundamental governance character of a stakeholder, ranging from the hierarchical paradigm of a technocratic institution with a strong engineering and regulatory mandate to the deeply stewardship-oriented and consensus-driven approach that, for example, can be found within Indigenous communities. In this study, CWRM exemplifies cooperative governance (Fig. 4), as CWRM is mandated by the State Water Code to "participate in the exchange of ideas, knowledge, and data" with other agencies and organizations. This pre-existing collaborative paradigm is a critical enabling factor for creating a receptive environment for the co-design of sustainable groundwater management. The distinction is crucial, as high-level engagement like co-decision making may still fail to produce sustainable outcomes if the institutional partner does not have a genuinely cooperative governance style.

Participants are involved through multiple steps, starting with informal meetings and communication to inform stakeholders about the project, assess the avenues and level of participation that they are interested in, and obtain updated pumping data to start designing the technocratic version of the simulation optimization framework before the collaborative modeling process. The collaborative modeling process involves a full-day workshop to co-design the simulation optimization framework. According to Principle 6 (Fig. 2) of Langsdale et al. (2013), collaborative modeling requires the integration of both technical modeling expertise and facilitation skills. The role of the lead modeler was to lead technical discussions, distill expectations, synthesize the inputs of the stakeholders, and build a co-designed model with the stakeholders. The role of the facilitator was to contact stakeholders to plan for

the workshop and facilitate discussion during the workshop. This workshop was followed by a meeting to present the updated simulation optimization results based on the co-design process. These two events were attended by the modeling team and CWRM staff. At the project completion a third meeting occurred, which was attended by CWRM, BWS, and the modeling team. The objective of the meeting was to obtain stakeholder feedback on the modeling output and discuss future steps.

4. Results and discussion

4.1 Simulation optimization tool

We developed a simulation optimization code that has eight options to answer questions related to water allocation, spring discharge, climate change impact on recharge and sea-level rise, land-use scenarios, and economic analysis of withdrawal cost. The simulation code is the finite element SUTRA model - Version 2.0 (Voss and Provost, 2002). This is a USGS model to simulate density dependent groundwater flow, and the code is written in Fortran. We used a special version of SUTRA Version 2.0 (2D3D.1) (Oki, 2005) that is specifically tailored for Hawai'i to account for specific yield. The simulation code is CPU intensive and constrained by clock frequency of the processor. The optimization module consists of the CMA-ES algorithm (Hansen et al., 2003) in a parallel computing environment (Elshall et al., 2015) with high throughput serial execution of model iterations, and after each iteration the results are processed and new solutions for the next iteration are proposed accordingly (Elshall et al., 2015). The software has integrated checkpointing to enable the simulation to resume at the last completed iteration in the event it is interrupted or does not converge, which ensures that there are no wasted cycles.

4.2 Product

Formulating the simulation optimization problem involves making assumptions about different settings. Formulating the simulation optimization problem is done iteratively through a collaborative modeling process (Fig. 2). Then we formulated the simulation optimization problem given the stakeholders' feedback to evaluate various management questions accordingly. Based on various stakeholders' feedback (Table 1), we updated the pumping wells map. Fig. 5 shows the updated pumping well map based on stakeholder participation in which pumping wells are categorized by aquifer formation that are either basalt or caprock. Stakeholders suggested relaxing the salinity threshold at the caprock to 1,000 mg/l chloride since this area could naturally have high salinity and the groundwater is mainly used for irrigation purposes. Pumping wells are also categorized by aquifer administrative unit according to the Department of Land and Natural Resources: Ewa-Kunia, Waipahu-Waiawa, Waimalu and Moanalua. To be consistent with the current management practice, we report on the sustainable yield for each

administrative unit. In addition, the wells are categorized according to three main interest groups that include (1) Board of Water Supply (BWS) wells and shafts, (2) federal wells, and (3) other wells such as state government wells, irrigation wells, home associations wells, wells with missing information, and other private wells. The current withdrawal of BWS wells and shafts, federal wells and other wells are 90.25, 19.07 and 7.63 million gallons per day (mgd), respectively. The current permitted withdrawal of BWS wells and shafts, federal wells and other wells are 124.97, 22.67 and 33.46 mgd, respectively. The stakeholder mentioned that BWS wells should be prioritized as decision variables, while federal wells are generally managed separately. Finally, the wells are categorized by current withdrawal: >0.01 and \leq 0.1 mgd (48 wells), >0.1 and \leq 1 mgd (44 wells), and >1 mgd (27 wells). Stakeholders suggested to start by optimizing withdrawal for pumping wells with current withdrawal above 1 mgd.

These simulation optimization runs are for a 50-year design period. Pumping wells with current withdrawal less than 1 mgd are not included as decision variables. The salinity thresholds for the caprock and the basalt aquifers are 250 mg/l and 1000 mg/l chloride, respectively. The head-drop threshold is 1 m from the pre-development conditions. The decision variables are wells with average withdrawal from 2001 to 2015 larger than 1 mgd. The two cases, in which Navy wells are excluded from and included in the set of decision variables, have 24 and 27 decision variables, respectively (Fig. 5).

Table 1: Questions to and feedback from stakeholders are represented by black and blue font, respectively. The underlined text represent the settings of the simulation optimization solutions that were presented to the stakeholders in the first workshop.

Topic	Questions and feedback
Initial condition	Q: Current withdrawal for prediction period from 2001 to 2015: (i) monthly
	average, (ii) annual average, (iii) period average or (iv) other?
	Period averaging is a reasonable assumption, and missing data should
	not be included as zeros in the averaging. Using that current data
	without any averaging is also a reasonable choice
<u>Decision variables</u>	Q: Pumping wells: (i) selected pumping wells, (ii) pumping clusters or (iii)
	all pumping well
	Clustering can be avoided by selecting relevant pumping wells such as
	the Board of Water Supply (BWS) wells and the Navy wells. Private
	wells, especially those with low withdrawal rates, do not need to be
	included in the decision variables

Topic	Questions and feedback
	Q: Time-dependent withdrawal: (i) constant withdrawal or (ii) time variant
	withdrawal
	Constant withdrawal is a reasonable assumption as time-variant
	withdrawal is not needed and it is difficult to present and communicate
	Q: Withdrawal rates: (i) minimum and maximum withdrawal per pumping well
	if any or (ii) a uniform distribution from zero to a large number
	For initial test runs defining minimum and maximum withdrawal per
	pumping well is not needed, yet that can be later incorporated based
	on feedback from BWS
Clustering/zonation	Q: Withdrawal clusters: (i) K-mean clustering, (ii) aquifer units, or (iii) other
	Clustering can be avoided, yet pumping wells can be categorized by (i)
	DLNR aquifer units, (ii) Interest groups (e.g., BWS wells, Navy wells,
	irrigation wells, private wells, etc.) and (iii) aquifer property (e.g., basalt
	aquifer, Caprock, valley-fill barrier, etc.).
	Salinity threshold at the Caprock wells should be 1000 mg/l chloride
	versus 250 mg/l for the basalt aquifer
	Q: Withdrawal ratios for pumping wells in each cluster: (i) current, (ii)
	permitted, (iii) evenly distributed or (iv) other
	Using the current ratio is a reasonable assumption, but this is not
	needed if we will avoid clustering
	Q: Withdrawal rates for the fixed pumping wells: (i) permitted, (ii) current or
	(iii) zero
	Using the current rates is a reasonable assumption
	Q: Current withdrawal: (i) monthly average, (ii) annual average, (iii) average from
	<u>2001 to 2015</u> or (iv) other
	Using an average withdrawal from 2001 to 2015 is a reasonable
	assumption
Observation	Observation locations (i) decision variable pumping wells, (ii) decision
	variable pumping wells plus additional observation locations, (iii) other?

Topic	Questions and feedback
	The current selection is reasonable and additional observation locations
	can be included depending on feedback from BWS
	Observed salinity: (i) per node, (ii) water mixing per pumping well or (ii) water
	mixing per cluster?
	The current selection of water mixing per pumping well is reasonable
	Observation time: (i) Observation at the end of simulation, (ii) observation at
	time shift (maximum), (iii) observation at time shift (average)?
	Observation at the end of the simulation is a reasonable assumption as
	it is not stringent and reflects the desired situation at the end of the
	design period in 2070
Additional	Other points?
<u>feedback</u>	There is public pressure on CWRM and BWS to report on the impact of
	withdrawal on submarine groundwater discharge

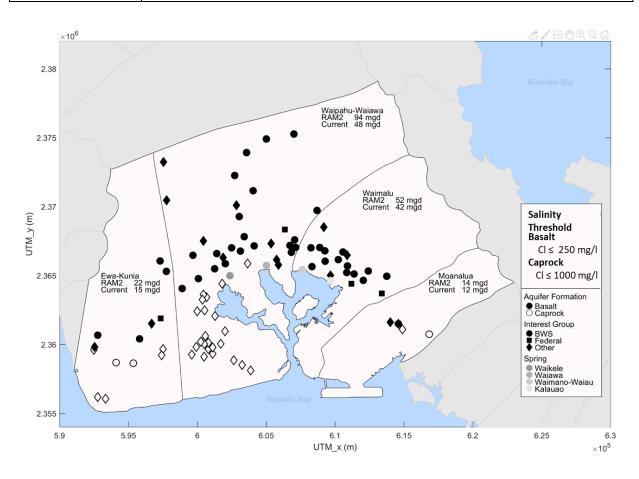


Fig. 5. Updated pumping well map based on stakeholder engagement, in which pumping wells are categorized by aquifer property (basalt and caprock), aquifer unit (Ewa-Kunia, Waipahu-Waiawa, Waimalu and Moanalua) and interest group (BWS, Navy and Private).

4.3 Mid-century projection

479

480

481

482

483

484

485

486

487

488 489

490

491

492

493

494

495

496

497

498

The mid-century projection of groundwater conditions based on current pumping rates, recharge levels, climate and land use are illustrated in Fig. 6. The projected groundwater withdrawal will decline by 12% from the current pumping scheme due to saltwater intrusion. Climate change showed a significant impact on projected groundwater availability via changes in recharge, sea level rise, and land use management, as shown in the supplementary material (Elshall and Gebremedhin, 2025). Under a future dry climate scenario, both top and boundary recharge decline, resulting in a 26% reduction in freshwater pumping compared to current conditions. This decline in fresh groundwater is due to the compounding effects of lower rainfall and reduced recharge capacity, which intensify saltwater intrusion into the aguifer system. Under the combined climate change and sea-level rise (0.5 m) scenario, projected freshwater withdrawal drops to 63 mgd from the current pumping rate of 117 mgd, reflecting a 46% decline. Compared to accounting only for climate-driven reductions in recharge, the inclusion of sea-level rise leads to a much sharper decline in freshwater availability. The inclusion of suboptimal land-use management combined with climate change and sea-level rise results in a 48% reduction in projected fresh groundwater compared to current withdrawal levels. This indicates that, compared to the scenario with climate change and sea-level rise, the addition of suboptimal land-use practices resulted in a slight further decline of 2% in fresh groundwater availability.

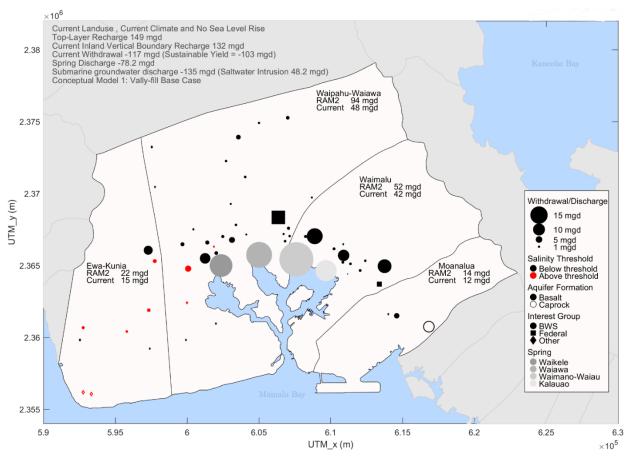


Fig. 6. Future projected fresh groundwater with the current land use, climate, and withdrawal trend.

4.4 Pumping optimization for mitigation

4.4.1. Groundwater accessibility scenarios

The projected fresh groundwater availability under an optimized pumping strategy that constrains spring discharge to current levels is presented in Fig. 7. The maximum withdrawal rate of 127 mgd represents an 8% increase compared to the projection based on current conditions (Fig. 6). This indicates that the optimal pumping schedule can effectively reduce saltwater intrusion, which was the driver behind the 12% decline in the non-optimized fresh groundwater projection.

The optimization code can accommodate various withdrawal schemes to account for different water allocation scenarios that the stakeholder may be interested in evaluating. The V5111 code refers to fixed withdrawal for 27 decision variables, while V5101 refers to withdrawal for 24 decision variables. The user has four digits (e.g., V5111) to assign decision variables. Using the first digit, the user can select a value from 2 to 5 to set pumping wells with current withdrawal greater than or equal to a predefined threshold of 0, 0.01, 0.1, and 1 mgd, respectively, as decision variables. This will result in 92, 72, 55 and 27 decision variables, respectively. Setting the first digit to 2, 3 or 4 is not currently recommended as discussed below,

and the current default value for the first digit is 5. Using the second to fourth digits, the user can choose to include or exclude the BWS wells, federal wells and other wells. For example, the code V5111 will select pumping wells with current withdrawal greater than or equal to 1 mgd, including BWS wells, federal wells and other wells, resulting in 27 decision variables. In this case, all pumping wells with current withdrawal less than 1 mgd will be fixed at their current withdrawal. The code V5101, on the other hand, will select pumping wells with current withdrawal above 1 mgd, including BWS wells and other wells, but excluding federal wells, resulting in 24 decision variables. In this case, all federal wells, and all pumping wells with current withdrawal less than 1 mgd are fixed at their current withdrawal.

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538539

We evaluated two withdrawal schemes, V5111 and V5101, to understand the impact of including and excluding federal wells as shown in the supplementary material (Elshall and Gebremedhin, 2025). For the withdrawal scheme V5111, the maximum allowable withdrawal is 127 mgd. As noted above, the optimal solution for withdrawal schemes V5111 has 27 decision variables (22 BWS wells, 3 federal wells and 2 other wells), while other wells are fixed at their current withdrawal. Wells with withdrawal less than 0.1 mgd are not shown. The RAM2 estimated withdrawal (RAM2), current withdrawal (current), and simulation optimization maximum withdrawal (optimum) are shown for each administrative unit. Note that the sustainable yield (SY) value is defined as the maximum allowable extracted water that does not exceed the salinity threshold. Submarine groundwater discharge (SGD) and saltwater intrusion refer to outflow and inflow at the coastal boundary, respectively. For all of the aguifer administrative units, the estimated maximum allowable withdrawal is greater than or equal to current withdrawal. However, for withdrawal scheme V5101 that does not include federal wells as decision variables, the maximum allowable withdrawal is reduced to 124 mgd. The inclusion of the Navy wells provided added flexibility of 2.4% in optimized groundwater withdrawal. The impact of increasing the number of decision variables on sustainable yield needs further investigation. Increasing the number of pumping wells to be included in the optimization will increase the degrees of freedom, and thus may result in higher maximum allowable withdrawal, although it will simultaneously increase computational costs.

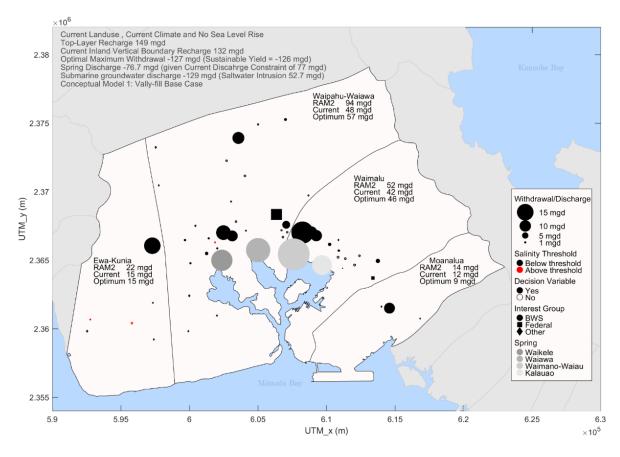


Fig. 7. Projected groundwater availability under an optimized pumping strategy that constrains spring discharge to current levels

4.4.2 Pumping optimization for climate impact mitigation

Under RCP 8.5 midcentury rainfall, groundwater recharge is expected to decline by around 16% compared with baseline rainfall conditions, with the most pronounced reductions in high-elevation forested areas (Bremer et al., 2021). Sustainable yield is also projected to decline, which indicates the combined effect of decreased recharge and increasingly binding salinity constraints on pumping capacity. Under the future climate scenario with optimized groundwater pumping, projected freshwater availability is 2% lower than the current withdrawal rate, as shown in the supplementary material (Elshall and Gebremedhin, 2025). This indicates that the optimization schedule improves freshwater availability by 24% compared to the non-optimized condition. We also evaluated the combined impact of climate change and sea level rise to understand how the optimal solution changes under the current land use. The projected freshwater availability under this combined impact with optimized groundwater pumping is presented in Fig. 8. In this scenario, the projected fresh groundwater experiences only a 15% decline compared to current withdrawal levels, which is a 31% improvement over the same conditions without any optimization (Fig.

6). These results highlight the effectiveness of pumping optimization in reducing the impacts of decreased recharge and increased saltwater intrusion.

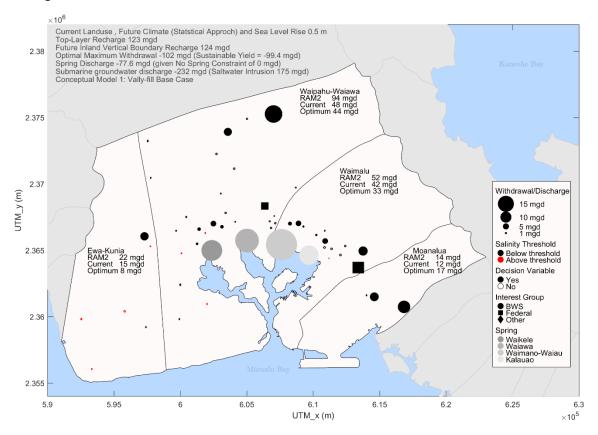


Fig. 8. Optimized future fresh groundwater given expected climate change impacts on recharge and sea-level rise

4.5. Mitigation with nature-based solutions and best management practices

Land-use and watershed management practices play a crucial role in shaping groundwater sustainable yield, particularly under projected climate change stressors. Land cover change can influence recharge and sustainable yield, though is likely a less significant driver of groundwater recharge than climate change in the study area (Bremer et al., 2021). High forest protection can, however, substantially mitigate climate impacts and improve groundwater yield, as presented in Fig. 9. While the difference in groundwater yield between corridor and sprawl development scenarios is modest in terms of pumping volume, sprawl development introduces more negative socio-environmental consequences, including habitat fragmentation, water and air pollution, increased infrastructure costs, inequality, and social homogeneity. Scenario b in Fig. 9 (corridor development with high forest protection) shows a notable increase of 32 mgd in total pumping capacity compared to scenario a (current conditions)Fig. 9, indicating the hydrologic value of nature-based solutions. With optimization alone, 22 mgd more than current withdrawal can be sustainably pumped, but incorporating forest protection allows for an additional 11 mgd, highlighting the

synergistic benefits of combining pumping strategies with watershed restoration. These results affirm that nature-based solutions like forest protection are a cost-effective and scientifically supported strategy to enhance climate resilience in groundwater management.

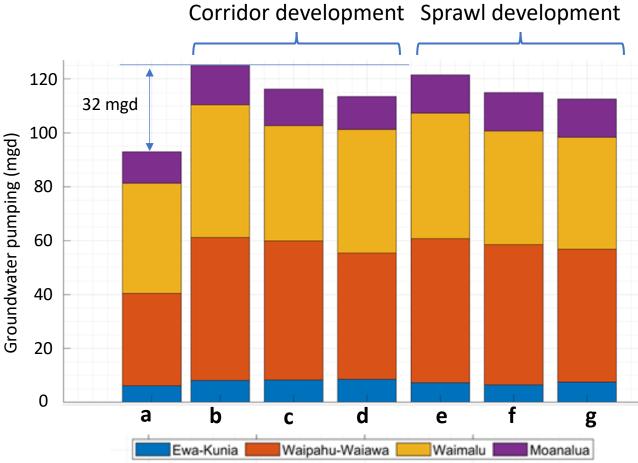


Fig. 9. Projected groundwater pumping under six land-use and watershed management scenarios, combining two development patterns and three forest protection levels: (b–d) Corridor development with high, targeted, and no forest protection; (e–g) Sprawl development with high, targeted, and no forest protection. (a) represents the current condition.

4.6 Societal preferences: Trade-off between spring discharge and pumping

Spring discharge and submarine groundwater discharge are important aquifer performance factors when evaluating sustainable yield (El-Kadi et al., 2014; Hugman et al. 2015 2017; Post et al., 2018; Stigter et al., 2009). Constraining spring discharge in Pearl Harbor is needed to account for environmental water for groundwater dependent ecosystems, for watercress and other crop cultivation, and for other industrial activities (Oki, 2005). Human activities in this area can be associated with strong relational values that emphasize cultural identity and responsibility. Accordingly, one of the main aims for including spring constraints is to analyze the sustainable yield policy application in Hawai'i with relational values in mind.

Rather than merely managing for economic development, the analysis focuses on Pearl Harbor spring discharge, which is important for cultural and ecosystem uses.

Defining a spring discharge threshold to simultaneously meet groundwater dependent ecosystems and human activities demands is not a straightforward task. Unlike a salinity threshold for drinking water, there is no obvious threshold for spring discharge volume and salinity. Accordingly, the objective of this module is to understand how maintaining different levels of spring discharge to meet the aforementioned demands would reduce groundwater withdrawal. To this end, we can set the spring discharge threshold as a fraction of the pre-development spring discharge. To estimate the pre-development spring discharge, we used the Pearl Harbor model 1880-2000. The Pearl Harbor springs are inland near the margin of the caprock, discharging from areas where volcanic rocks are exposed as diffuse seeps where the caprock is thin (Oki, 2005). The discharge from the Pearl Harbor springs is directly dependent on the head in the aquifer such that the discharge is high when head in the aquifer is high, and discharge is low when head in the aquifer is low (Oki, 1998; 2005).

The spring discharge can be constrained to a user defined threshold. This threshold can be set to no spring constraint, current spring discharge, user-defined fraction from pre-development spring discharge, or predevelopment spring discharge. We conducted six simulation optimization runs with different spring thresholds of 40%, 56%, 60%, 80%, and 100% of pre-development discharge, and compared the results to the case of no spring constraint. Note that the threshold of 56% is the current spring discharge. When the spring constraint is set to 100% of pre-development spring discharge (i.e. 137 mgd), the optimization cannot reach that limit. The maximum spring discharge achievable is 84% of pre-development discharge (i.e. 115 mgd). The optimization cannot achieve 100% pre-development discharge for at least two reasons. First, our decision variables are only 27 pumping wells and the remaining 65 pumping wells are fixed. The total withdrawal of these fixed pumping wells is 15.32 mgd. Thus, the optimization cannot turn off these wells as they are not decision variables. Second, even if we turned off these pumping well, achieving 100% pre-development discharge may not be even possible due to a deficit of 29 mgd between the pre-development recharge (307 mgd) and the current recharge (278 mgd). Note that the estimated recharge in 1880 is 307 mgd, including 175 mgd of top-recharge and 132 mgd of in-land vertical boundary recharge; the estimated current recharge is 278 mgd, including 146 mgd of top-recharge and 132 mgd of in-land vertical boundary recharge.

The simulation optimization results given the spring constraint are shown in Fig. 10. Optimal maximum withdrawal decreases with increasing the spring discharge. Constraining the spring discharge to current

discharge reduces the optimal maximum withdrawal from 155 mgd to 121 mgd. Fig. 10 also demonstrates the correlation between submarine groundwater discharge and spring discharge; increasing spring discharge by reducing withdrawal will result in higher submarine groundwater discharge as well. In summary, this simulation optimization tool can provide decision makers in Hawai'i with the trade-offs between sustainable groundwater withdrawal for economic development and maintaining different levels of spring discharge for providing ecosystem services and reinforcing relational values.

Fig. 10. Maximum allowable withdrawal, spring discharge and submarine groundwater discharge for 6 simulation optimization runs with different spring thresholds of 0, 40%, 56%, 60%, 80%, and 84%, respectively, from pre-development recharge. Threshold 0 refers to no spring discharge constraint. Threshold of 56% is the current spring discharge. Threshold of 84% is upper limit that the optimization can achieve.

More than 100 simulation-optimization runs were conducted across various scenarios to assess sustainable groundwater yield. The main scenarios include: The simulation—optimization framework was applied under four. First, it compared current groundwater withdrawals with optimized withdrawal

strategies under the same climate and land use conditions. Second, it evaluated the influence of climate change by incorporating its impacts on recharge processes and sea level rise relative to a base case. Third, it examined the potential benefits of improved land management practices that enhance recharge. Finally, it accounted for environmental flow requirements by including spring discharge and submarine groundwater discharge, which are critical for sustaining groundwater-dependent ecosystems and human activities. The framework for evaluating sustainable yield that accounts for hydrologic, environmental, and socioeconomic consequences provides several insights for academic researchers, water regulators, and water managers in Hawai'i and other coastal regions. Detailed optimization results for all scenarios are provided in the supplementary material (Elshall and Gebremedhin, 2025).

Conclusions

This study introduces a novel stakeholder-informed simulation optimization framework for evaluating groundwater sustainability in complex coastal aquifer systems. By integrating advanced numerical hydrologic modeling, state-of-the-art optimization algorithms, and collaborative modeling processes, the framework offers a powerful, flexible tool for sustainable groundwater management. The methodological approach lies in operationalizing the concept of groundwater sustainability through a dynamically coupled platform that incorporates hydrogeologic processes, environmental thresholds, and policy-driven objectives. The integration of a three-dimensional, density-dependent groundwater model with climate-informed recharge estimates and optimization enables evaluation of trade-offs among competing goals such as maximizing water supply, maintaining ecological flow, and mitigating salinization risk.

A key strength of the approach is the active engagement of stakeholders throughout the modeling lifecycle, which enhances both model relevance and institutional acceptance. Stakeholder input informs the selection of decision variables, performance metrics, and scenario priorities, thereby aligning scientific outputs with regulatory mandates, community values, and operational constraints. In contrast to traditional analytical or lumped models, this framework accommodates spatial heterogeneity that is essential for sustainability assessments. Results demonstrate that relying solely on static or oversimplified methods may significantly overestimate sustainable groundwater yield, potentially undermining ecosystem services and long-term water security.

Moreover, the framework enables explicit evaluation of future scenarios, including those driven by climate change, land management, and socio-economic factors. It highlights the importance of incorporating uncertainty, intergenerational trade-offs, and nature-based solutions into groundwater

- 664 governance. This approach not only advances methodological rigor but also supports informed decision-
- 665 making and policy development. Therefore, it can be adapted to diverse hydrogeologic and institutional
- contexts, making it a valuable tool for advancing groundwater sustainability goals globally.

Acknowledgement:

- You can acknowledge our NSF C2H2 projects, because we can use the method presented in the paper for
- our C2H2 project. I leave the decision to you.

Reference

667

670

673

677

678

679

684

685

686

687

688

689

690

691

692

693

694

695

- Adler, P., Arik, A., Chun, G., 2018. Network Governance and Long-term Water Supply in Hawai'i, Social Science Research Institute at the University of Hawai'i at Mānoa. Honolulu.
 - Alley, W.M., 2018. Groundwater: State of the Science and Practice 100.
- Basco-Carrera, L., Warren, A., van Beek, E., Jonoski, A., Giardino, A., 2017a. Collaborative modelling or
 participatory modelling? A framework for water resources management. Environmental
 Modelling and Software 91, 95–110. https://doi.org/10.1016/j.envsoft.2017.01.014
 - Basco-Carrera, L., Warren, A., van Beek, E., Jonoski, A., Giardino, A., 2017b. Collaborative modelling or participatory modelling? A framework for water resources management. Environmental Modelling and Software 91, 95–110. https://doi.org/10.1016/j.envsoft.2017.01.014
- 680 Bremer, L.L., Elshall, A.S., Wada, C.A., Brewington, L., Delevaux, J.M.S., El-Kadi, A.I., Voss, C.I., Burnett,
 681 K.M., 2021. Effects of land-cover and watershed protection futures on sustainable groundwater
 682 management in a heavily utilized aquifer in Hawai'i (USA). Hydrogeol J 29, 1749–1765.
 683 https://doi.org/10.1007/s10040-021-02310-6
 - Burnett, K.M., Elshall, A.S., Wada, C.A., Arik, A., El-Kadi, A., Voss, C.I., Delevaux, J.M.S., Bremer, L.L., 2020. Incorporating Historical Spring Discharge Protection Into Sustainable Groundwater Management: A Case Study From Pearl Harbor Aquifer, Hawai'i. Frontiers in Water 2, 14. https://doi.org/10.3389/frwa.2020.00014
 - Carr, G., Blöschl, G., Loucks, D.P., 2012. Evaluating participation in water resource management: A review. Water Resources Research 48, 1–17. https://doi.org/10.1029/2011WR011662
 - Cash, D.W., Clark, W.C., Alcock, F., Dickson, N.M., Eckley, N., Guston, D.H., Jäger, J., Mitchell, R.B., 2003. Knowledge systems for sustainable development. Proceedings of the national academy of sciences 100, 8086–8091.
 - Castilla-Rho, J.C., 2017a. Groundwater Modeling with Stakeholders: Finding the Complexity that Matters. Groundwater 55. https://doi.org/10.1111/gwat.12569
 - Castilla-Rho, J.C., 2017b. Groundwater Modeling with Stakeholders: Finding the Complexity that Matters. Groundwater 55. https://doi.org/10.1111/gwat.12569
- 697 Castilla-Rho, J.C., Rojas, R., Andersen, M.S., Holley, C., Mariethoz, G., 2019. Sustainable groundwater 698 management: How long and what will it take? Global Environmental Change 58, 101972. 699 https://doi.org/10.1016/j.gloenvcha.2019.101972
- Castilla-Rho, J.C., Rojas, R., Andersen, M.S., Holley, C., Mariethoz, G., 2017. Social tipping points in global
 groundwater management. Nature Human Behaviour 1, 640–649.
 https://doi.org/10.1038/s41562-017-0181-7
- Custodio, E., 2002. Aquifer overexploitation: What does it mean? Hydrogeology Journal 10, 254–277. https://doi.org/10.1007/s10040-002-0188-6

- Delottier, H., Pryet, A., Dupuy, A., 2017. Why Should Practitioners be Concerned about Predictive
 Uncertainty of Groundwater Management Models? Water Resources Management 31, 61–73.
 https://doi.org/10.1007/s11269-016-1508-2
- Elshall, A.S., Arik, A.D., El-Kadi, A.I.., Pierce, S., Ye, M., Burnett, K.K., Wada, C., Bremer, L.L., Chun, G.,
 2020a. Groundwater sustainability: A review of the interactions between science and policy.
 Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab8e8c

- Elshall, A.S., Castilla-Rho, J., El-Kadi, A.I., Holley, C., Mutongwizo, T., Sinclair, D., Ye, M., 2022. Sustainability of Groundwater, in: Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-821139-7.00056-8
- Elshall, A.S., Gebremedhin, M.A., 2025. Supplementary material collaborative modeling-based evaluation of groundwater sustainability in coastal aquifers using simulation optimization. https://doi.org/10.5281/zenodo.16584954
- Fishall, A.S., Pham, H. V, Tsai, F.T.-C., Yan, L., Ye, M., 2015. Parallel Inverse Modeling and Uncertainty Quantification for Computationally Demanding Groundwater-Flow Models Using Covariance Matrix Adaptation. J. Hydrol. Eng. https://doi.org/10.1061/(asce)he.1943-5584.0001126
 - Elshall, A.S., Ye, M., Finkel, M., 2020b. Evaluating two multi-model simulation—optimization approaches for managing groundwater contaminant plumes. Journal of Hydrology 590, 125427. https://doi.org/10.1016/j.jhydrol.2020.125427
 - Engott, J.A., Johnson, A.G., Bassiouni, M., Izuka, S.K., Rotzoll, K., 2017. Spatially distributed groundwater recharge for 2010 land cover estimated using a water-budget model for the Island of Oʻahu, Hawaiʻi. https://doi.org/10.3133/sir20155010
 - Farhadi, S., Reza, M., Reza, G., Nikoo, M.R., Rakhshandehroo, G.R., Akhbari, M., Alizadeh, M.R., 2016. An agent-based-nash modeling framework for sustainable groundwater management: A case study. Agricultural Water Management 177, 348–358. https://doi.org/10.1016/j.agwat.2016.08.018
 - Fowler, K.R., Jenkins, E.W., Ostrove, C., Chrispell, J.C., Farthing, M.W., Parno, M., 2015. A decision making framework with MODFLOW-FMP2 via optimization: Determining trade-offs in crop selection. Environmental Modelling & Software 69, 280–291. https://doi.org/10.1016/j.envsoft.2014.11.031
 - Gleeson, T., Alley, W.M., Allen, D.M., Sophocleous, M.A., Zhou, Y., Taniguchi, M., Vandersteen, J., 2012. Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively. Ground Water 50, 19–26. https://doi.org/10.1111/j.1745-6584.2011.00825.x
 - Gorelick, S., Zheng, C., 2015. Global change and the groundwatermanagement challenge Steven. Water Resources Research 3031–3051. https://doi.org/10.1002/2014WR016825.Received
 - Gorelick, S., Zheng, C., Section, S., 2015. Global change and the groundwatermanagement challenge Steven. Water Resources Research 3031–3051. https://doi.org/10.1002/2014WR016825.Received
 - Gray, S., Voinov, A., Paolisso, M., Jordan, R., BenDor, T., Bommel, P., Glynn, P., Hedelin, B., Hubacek, K., Introne, J., Kolagani, N., Laursen, B., Prell, C., Olabisi, L.S., Singer, A., Sterling, E., Zellner, M., 2018. Purpose, processes, partnerships, and products: four Ps to advance participatory socioenvironmental modeling. Ecol. Appl. 28, 46–61. https://doi.org/10.1002/eap.1627
 - Griffioen, J., van Wensem, J., Oomes, J.L.M., Barends, F., Breunese, J., Bruining, H., Olsthoom, T., Stams, A.J.M., van der Stoel, A.E.C., 2014. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands. Science of the Total Environment 485, 810–819. https://doi.org/10.1016/j.scitotenv.2014.02.114
- Hadley, D.R., Abrams, D.B., Mannix, D.H., Cullen, C.E., 2021. Using Production Well Behavior to Evaluate
 Risk in the Depleted Cambrian-Ordovician Sandstone Aquifer System, Midwestern USA. Water
 Resour. Res. 57, e2020WR028844. https://doi.org/10.1029/2020WR028844

- Hansen, N., Müller, S.D., Koumoutsakos, P., 2003. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation 11, 1–18. https://doi.org/10.1162/106365603321828970
- Hedelin, B., Gray, S., Woehlke, S., BenDor, T.K., Singer, A., Jordan, R., Zellner, M., Giabbanelli, P., Glynn,
 P., Jenni, K., Jetter, A., Kolagani, N., Laursen, B., Leong, K.M., Olabisi, L.S., Sterling, E., 2021.
 What's left before participatory modeling can fully support real-world environmental planning
 processes: A case study review. Environ. Modell. Softw. 143, 105073.
 https://doi.org/10.1016/j.envsoft.2021.105073
 - Henriksen, H.J., Rasmussen, P., Brandt, G., von Bulow, D., Jensen, F.V., 2007. Public participation modelling using Bayesian networks in management of groundwater contamination. Environ. Modell. Softw. 22, 1101–1113. https://doi.org/10.1016/j.envsoft.2006.01.008
 - Henriksen, H.J., Troldborg, L., Hojberg, A.L., Refsgaard, J.C., 2008. Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater-surface water model. Journal of Hydrology 348, 224–240. https://doi.org/10.1016/j.jhydrol.2007.09.056
 - Hesamfar, F., Ketabchi, H., Ebadi, T., 2023. Simulation-based multi-objective optimization framework for sustainable management of coastal aquifers in semi-arid regions. Journal of Environmental Management 338, 117785. https://doi.org/10.1016/j.jenvman.2023.117785
 - HRS Chapter 174C, 1987. State Water Code.

- Iwanaga, T., Partington, D., Ticehurst, J., Croke, B.F.W., Jakeman, A.J., 2020. A socio-environmental model for exploring sustainable water management futures: Participatory and collaborative modelling in the Lower Campaspe catchment. J. Hydrol.-Reg. Stud. 28, 100669. https://doi.org/10.1016/j.ejrh.2020.100669
- Jordan, R., Gray, S., Zellner, M., Glynn, P.D., Voinov, A., Hedelin, B., Sterling, E.J., Leong, K., Olabisi, L.S., Hubacek, K., Bommel, P., BenDor, T.K., Jetter, A.J., Laursen, B., Singer, A., Giabbanelli, P.J., Kolagani, N., Carrera, L.B., Jenni, K., Prell, C., 2018. Twelve Questions for the Participatory Modeling Community. Earth Future 6, 1046–1057. https://doi.org/10.1029/2018EF000841
- Kalf, F.R.P., Woolley, D.R., 2005. Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeology Journal 13, 295–312. https://doi.org/10.1007/s10040-004-0401-x
- Kusters, K., Buck, L., de Graaf, M., Minang, P., van Oosten, C., Zagt, R., 2017. Participatory Planning, Monitoring and Evaluation of Multi-Stakeholder Platforms in Integrated Landscape Initiatives. Environmental Management 1–12. https://doi.org/10.1007/s00267-017-0847-y
- Langsdale, S., Beall, A., Bourget, E., Hagen, E., Kudlas, S., Palmer, R., Tate, D., Werick, W., 2013.

 Collaborative Modeling for Decision Support in Water Resources: Principles and Best Practices.

 JAWRA Journal of the American Water Resources Association 49, 629–638.

 https://doi.org/10.1111/jawr.12065
- Li, J., Lu, W., Luo, J., 2021. Groundwater contamination sources identification based on the Long-Short Term Memory network. J. Hydrol. 601, 126670. https://doi.org/10.1016/j.jhydrol.2021.126670
- Liu, C.C.K., 2007. RAM2 Modeling and the Determination of Sustainable Yields of Hawaii Basal Aquifers.
 Honolulu.
- Liu, C.C.K., Dai, J.J., 2012. SEAWATER INTRUSION AND SUSTAINABLE YIELD OF BASAL AQUIFERS. Journal
 of the American Water Resources Association 48, 861–870. https://doi.org/10.1111/j.1752 1688.2012.00659.x
- Manda, A.K., Klein, W.A., 2014. Rescuing degrading aquifers in the Central Coastal Plain of North
 Carolina (USA): Just process, effective groundwater management policy, and sustainable
 aquifers. Water Resources Research 50, 5662–5677. https://doi.org/10.1002/2013wr015242

- Martin, E.G., Costa, M.M., Egerer, S., Schneider, U.A., 2021. Assessing the long-term effectiveness of Nature-Based Solutions under different climate change scenarios. Sci. Total Environ. 794, 148515. https://doi.org/10.1016/j.scitotenv.2021.148515
- Martinez-Santos, P., Llamas, M.R., Martinez-Alfaro, P.E., 2008. Vulnerability assessment of groundwater resources: A modelling-based approach to the Mancha Occidental aquifer, Spain. Environ.

 Modell. Softw. 23, 1145–1162. https://doi.org/10.1016/j.envsoft.2007.12.003
 - Mayer, A., Vivoni, E.R., Kossak, D., Halvorsen, K.E., Robles Morua, A., 2017. Participatory Modeling Workshops in a Water-Stressed Basin Result in Gains in Modeling Capacity but Reveal Disparity in Water Resources Management Priorities. Water Resour. Manag. 31, 4731–4744. https://doi.org/10.1007/s11269-017-1775-6
 - Mays, L.W., 2013. Groundwater Resources Sustainability: Past, Present, and Future. Water Resources Management 27, 4409–4424. https://doi.org/10.1007/s11269-013-0436-7
- Michael, H.A., Post, V.E.A., Wilson, A.M., Werner, A.D., 2017. Science, society, and the coastal groundwater squeeze. Water Resources Research 53, 2610–2617. https://doi.org/10.1002/2017WR020851

- Mink, J.F., 1981. Determination of Sustainable Yields in Basal Aquifers of Hawaiʻi, in: Fujimura, F.N., Chang, W.B.C. (Eds.), Groundwater in Hawaiʻi: A Century of Progress. University Press of Hawaii, Honolulu.
 - Mishra, S., Bosc, L., Gaur, S., Kacem, M., Ohri, A., 2023. Handling Large Decision Variables in Multi-Objective Groundwater Optimization Problems: Aquifer Parameter-Based Clustering Approach. Water Resour Manage 37, 4553–4568. https://doi.org/10.1007/s11269-023-03580-3
 - Molina, J.-L., Luis Garcia-Arostegui, J., Bromley, J., Benavente, J., 2011. Integrated Assessment of the European WFD Implementation in Extremely Overexploited Aquifers Through Participatory Modelling. Water Resour. Manag. 25, 3343–3370. https://doi.org/10.1007/s11269-011-9859-1
 - Mulligan, K.B., Brown, C., Yang, Y.-C.E., Ahlfeld, D.P., 2014a. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling. Water Resources Research 50, 2257–2275. https://doi.org/10.1002/2013WR013666
 - Mulligan, K.B., Brown, C., Yang, Y.-C.E., Ahlfeld, D.P., 2014b. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling. Water Resources Research 50, 2257–2275. https://doi.org/10.1002/2013WR013666
 - Mussehl, M., Webb, J.A., Horne, A., Rumpff, L., Poff, L., 2023. Applying and Assessing Participatory Approaches in an Environmental Flows Case Study. Environmental Management 72, 754–770. https://doi.org/10.1007/s00267-023-01829-6
 - Ocampo-Melgar, A., Barría, P., Chadwick, C., Rivas, C., 2022. Cooperation under conflict: participatory hydrological modeling for science policy dialogues for the Aculeo Lake. Hydrol. Earth Syst. Sci. 26, 5103–5118. https://doi.org/10.5194/hess-26-5103-2022
- Oki, D.S., 2005. Numerical Simulation of the Effects of Low-Permeability Valley-Fill Barriers and the Redistribution of Ground-Water Withdrawals in the Pearl Harbor Area, Oahu, Hawaii [WWW Document]. U.S. Geological Survey, Scientific Investigations Report 2005-5253. URL https://pubs.usgs.gov/sir/2005/5253/ (accessed 10.30.19).
- Oki, D.S., 1998. Geohydrology of the Central Oahu, Hawaii, ground-water flow system and numerical simulation of the effects of additional pumping. https://doi.org/10.3133/wri974276
- Oki, D.S., Meyer, W., 2001. Analytical Versus Numerical Estimates of Water-Level Declines Caused by Pumping, and a Case Study of the Iao Aquifer, Maui, Hawaii: U.S. Geological Survey Water-Resources Investigations Report 00-4244, 31 p. https://doi.org/10.3133/wri20004244
- Pholkern, K., Saraphirom, P., Cloutier, V., Srisuk, K., 2019. Use of Alternative Hydrogeological Conceptual Models to Assess the Potential Impact of Climate Change on Groundwater Sustainable Yield in

Central Huai Luang Basin, Northeast Thailand. Water 11, 241. https://doi.org/10.3390/w11020241

- Pierce, S.A., Sharp, J.M., Guillaume, J.H.A., Mace, R.E., Eaton, D.J., 2013. Aquifer-yield continuum as a guide and typology for science-based groundwater management. Hydrogeology Journal 21, 331–340. https://doi.org/10.1007/s10040-012-0910-y
 - Raei, E., Nikoo, M.R., Pourshahabi, S., 2017. A multi-objective simulation-optimization model for in situ bioremediation of groundwater contamination: Application of bargaining theory. Journal of Hydrology 551, 407–422. https://doi.org/10.1016/j.jhydrol.2017.06.010
 - Ricart, S., Kirk, N., 2022. Hydrosocial research for better understanding, managing, and modeling human-nature interactions. Front. Water 4, 1025040. https://doi.org/10.3389/frwa.2022.1025040
 - Rudestam, K., Langridge, R., 2014. Sustainable yield in theory and practice: bridging scientific and mainstream vernacular. Ground water 52, 90–99. https://doi.org/10.1111/gwat.12160
 - Salas, K., Pennington, D., 2024. Integrating Scenario Analysis and Participatory Modeling to Generate Plausible Future Narratives for Water Resources: A Case Study in the Middle Rio Grande River Basin. Sustainability 16, 10772. https://doi.org/10.3390/su162310772
 - Shuler, C.K., Mariner, K.E., 2020. Collaborative groundwater modeling: Open-source, cloud-based, applied science at a small-island water utility scale. Environmental Modelling & Software 127, 104693. https://doi.org/10.1016/j.envsoft.2020.104693
 - Sikdar, P.K., 2019. Problems and Challenges for Groundwater Management in South Asia, in:

 Groundwater Development and Management. Springer International Publishing, Cham, pp. 1–
 18. https://doi.org/10.1007/978-3-319-75115-3_1
 - Song, J., Yang, Y., Chen, G., Su, X., Lin, J., Wu, Jianfen, Wu, Jichun, 2019. Surrogate assisted multi-objective robust optimization for groundwater monitoring network design. J. Hydrol. 577, 123994. https://doi.org/10.1016/j.jhydrol.2019.123994
 - Sterling, E.J., Zellner, M., Jenni, K.E., Leong, K., Glynn, P.D., BenDor, T.K., Bommel, P., Hubacek, K., Jetter, A.J., Jordan, R., Olabisi, L.S., Paolisso, M., Gray, S., 2019. Try, try again: Lessons learned from success and failure in participatory modeling. Elementa-Sci. Anthrop. 7, 9. https://doi.org/10.1525/elementa.347
 - Stigter, T.Y., Monteiro, J.P., Nunes, L.M., Vieira, J., Cunha, M.C., Ribeiro, L., Nascimento, J., Lucas, H., 2009. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system. Hydrology and Earth System Sciences 13, 1185–1199. https://doi.org/10.5194/hess-13-1185-2009
- Tuinstra, J., van Wensem, J., 2014. Ecosystem services in sustainable groundwater management. The Science of the total environment 485–486, 798–803.

 https://doi.org/10.1016/j.scitotenv.2014.03.098
 - Voinov, A., Jenni, K., Gray, S., Kolagani, N., Glynn, P.D., Bommel, P., Prell, C., Zellner, M., Paolisso, M., Jordan, R., Sterling, E., Olabisi, L.S., Giabbanelli, P.J., Sun, Z., Le Page, C., Elsawah, S., BenDor, T.K., Hubacek, K., Laursen, B.K., Jetter, A., Basco-Carrera, L., Singer, A., Young, L., Brunacini, J., Smajgl, A., 2018. Tools and methods in participatory modeling: Selecting the right tool for the job. Environ. Modell. Softw. 109, 232–255. https://doi.org/10.1016/j.envsoft.2018.08.028
 - Voinov, A., Kolagani, N., McCall, M.K., Glynn, P.D., Kragt, M.E., Ostermann, F.O., Pierce, S.A., Ramu, P., 2016. Modelling with stakeholders Next generation. Environmental Modelling & Software 77, 196–220. https://doi.org/10.1016/j.envsoft.2015.11.016
- Watson, R.T., 2005. Turning science into policy: challenges and experiences from the science-policy
 interface. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 471–477.
 https://doi.org/10.1098/rstb.2004.1601

893	Werner, A.D., Sharp, H.K., Galvis, S.C., Post, V.E.A., Sinclair, P., 2017. Hydrogeology and management of
894	freshwater lenses on atoll islands: Review of current knowledge and research needs. Journal of
895	Hydrology 551, 819–844. https://doi.org/10.1016/j.jhydrol.2017.02.047
896	Yazdian, M., Rakhshandehroo, G., Nikoo, M.R., Mooselu, M.G., Gandomi, A.H., Honar, T., 2021.
897	Groundwater sustainability: Developing a non-cooperative optimal management scenario in
898	shared groundwater resources under water bankruptcy conditions. J. Environ. Manage. 292,
899	112807. https://doi.org/10.1016/j.jenvman.2021.112807

 Zare, F., Guillaume, J.H.A., ElSawah, S., Croke, B., Fu, B., Iwanaga, T., Merritt, W., Partington, D., Ticehurst, J., Jakeman, A.J., 2021. A formative and self-reflective approach to monitoring and evaluation of interdisciplinary team research: An integrated water resource modelling application in Australia. J. Hydrol. 596, 126070. https://doi.org/10.1016/j.jhydrol.2021.126070